Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerization binder-emulsion preparation

Almost all synthetic binders are prepared by an emulsion polymerization process and are suppHed as latexes which consist of 48—52 wt % polymer dispersed in water (101). The largest-volume binder is styrene—butadiene copolymer [9003-55-8] (SBR) latex. Most SBRlatexes are carboxylated, ie, they contain copolymerized acidic monomers. Other latex binders are based on poly(vinyl acetate) [9003-20-7] and on polymers of acrylate esters. Poly(vinyl alcohol) is a water-soluble, synthetic biader which is prepared by the hydrolysis of poly(viayl acetate) (see Latex technology Vinyl polymers). [Pg.22]

Homogeneous composite materials with high absorption and reflaction indices suitable for the production of optical elements have been prepared polymeric glasses made from transition metal sulfoselenides, Ag and Cu hahde photochromic glasses, and holographic emulsions of Ag hahde nanoparticles in gelatin. As a rule, the semiconductor components concentration in a polymeric binder (4-VPy, PVAl, etc.) does not exceed 0.1%. [Pg.191]

Acrylates are primarily used to prepare emulsion and solution polymers. The emulsion polymerization process provides high yields of polymers in a form suitable for a variety of appHcations. Acrylate polymer emulsions were first used as coatings for leather in the eady 1930s and have found wide utiHty as coatings, finishes, and binders for leather, textiles, and paper. Acrylate emulsions are used in the preparation of both interior and exterior paints, door poHshes, and adhesives. Solution polymers of acrylates, frequentiy with minor concentrations of other monomers, are employed in the preparation of industrial coatings. Polymers of acryHc acid can be used as superabsorbents in disposable diapers, as well as in formulation of superior, reduced-phosphate-level detergents. [Pg.148]

Emulsion Polymerization. Emulsion polymerization is the most important industrial method for the preparation of acryhc polymers. The principal markets for aqueous dispersion polymers made by emulsion polymerization of acryhc esters are the paint, paper, adhesives, textile, floor pohsh, and leather industries, where they are used principally as coatings or binders. Copolymers of either ethyl acrylate or butyl acrylate with methyl methacrylate are most common. [Pg.168]

A modified latex composition contains a phosphorus surface group. Such a latex is formed by emulsion polymerization of unsaturated synthetic monomers in the presence of a phosponate or a phosphate which is intimately bound to the surface of the latex. Thus, a modified latex containing 46% solids was prepared by emulsion polymerization of butadiene, styrene, acrylic acid-styrene seed latex, and a phosphonate comonomer in H20 in the presence of phosphated alkylphenol ethoxylate at 90°C. The modified latex is useful as a coating for substrates and as a binder in aqueous systems containing inorganic fillers employed in paper coatings, carpet backings, and wallboards [119]. [Pg.602]

It was apparent that the dense adsorption layer of HPC which was formed on the silica particles at the LCST plays a part in the preparation of new composite polymer latices, i.e. polystyrene latices with silica particles in the core. Figures 10 and 11 show the electron micrographs of the final silica-polystyrene composite which resulted from seeded emulsion polymerization using as seed bare silica particles, and HPC-coated silica particles,respectively. As may be seen from Fig.10, when the bare particles of silica were used in the seeded emulsion polymerization, there was no tendency for encapsulation of silica particles, and indeed new polymer particles were formed in the aqueous phase. On the other hand, encapsulation of the seed particles proceeded preferentially when the HPC-coated silica particles were used as the seed and fairly monodisperse composite latices including silica particles were generated. This indicated that the dense adsorption layer of HPC formed at the LCST plays a role as a binder between the silica surface and the styrene molecules. [Pg.141]

In this special volume on polymer particles, recent trends and developments in the synthesis of nano- to micron-sized polymer particles by radical polymerization of vinyl monomers in environmentally friendly heterogeneous aqueous and supercritical carbon dioxide fluid media are reviewed by prominent worldwide researchers. Polymer particles are prepared extensively as synthetic emulsions and latexes, which are applied as binders in the industrial fields of paint, paper and inks, and films such as adhesives and coating materials. Considerable attention has recently been directed towards aqueous dispersed systems due to the increased awareness of environmental issues. Moreover, such polymer particles have already been applied to more advanced fields such as bio-, information, and electronic technologies. In addition to the obvious commercial importance of these techniques, it is of fundamental scientific interest to completely elucidate the mechanistic details of macromolecule synthesis in the microreactors that the polymer particles in these heterogeneous systems constitute. [Pg.378]

After the paper making process is complete, latexes that are useful as binders for the application of clays or CaCC>3 to paper for printing paper may be prepared using the dimer of AMS. In a typical formulation, styrene, butadiene, Me methacrylate, and acrylonitrile were emulsion polymerized in the presence of AMS dimer to obtain a copolymer latex.473 Surprisingly, the AMS dimer was used in combination with tert-dodecylmercaptan, so there may have been some residual odor. Unsaturated carboxylic acids, such as acrylic acid, or sulfonic acids, such as 2-ethylsulfonyl acrylate, or unsaturated amides, such as acrylamide, are also useful, providing the polarity necessary in these applications.474... [Pg.551]

It has been proved that incorporation of carboxylic acid groups in the polymeric chain has a significant effect on colloidal properties of latex, processability, and end-use property. Carboxylated styrene-butadiene latexes (XSBR) are prepared via batch emulsion copolymerization with different amounts of acrylic acid in the absence of emulsifier. They are among the most important polymeric colloids, and can be used as binder in paper coatings, carpet backing, paints, and nonwoven. There are several studies on the preparation and properties of XSBR latexes. [Pg.2873]

Binders used in waterborne latex paints are prepared by emulsion polymerization of mixtures of monomers selected to give the optimum glass transition temperature, Tg [4(e)]. Low Tg contributes to good film formation so that the paint... [Pg.217]

The industrial reaction to this situation is one of compliance, with an increasing use of waterborne paint formulations based on the use of synthetic latices as binders especially in paints for domestic application. Such latices are usually polymeric colloids, of volume fraction from 0.2 to 0.5, dispersed in aqueous surfactant solution, prepared by a process of emulsion polymerization. These dispersions have a slightly turbid appearance, often with a low viscosity of order 1 mPa s. The latices can be readily prepared as near-monodisperse colloids. [Pg.481]


See other pages where Polymerization binder-emulsion preparation is mentioned: [Pg.111]    [Pg.156]    [Pg.131]    [Pg.638]    [Pg.83]    [Pg.1795]    [Pg.230]    [Pg.511]    [Pg.914]    [Pg.568]    [Pg.383]    [Pg.31]    [Pg.270]    [Pg.1352]    [Pg.425]    [Pg.842]    [Pg.12]    [Pg.234]    [Pg.382]   
See also in sourсe #XX -- [ Pg.107 , Pg.108 , Pg.109 ]

See also in sourсe #XX -- [ Pg.107 , Pg.108 , Pg.109 ]




SEARCH



Binder polymerization

Binder-emulsion preparation

Binders preparation

Emulsion polymerization

Emulsion preparation

Emulsions, polymeric

Polymeric binder

Polymeric preparations

Polymerization emulsion polymerizations

Polymerization, preparation

© 2024 chempedia.info