Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerization importance

Poly(butadiene- (9-acrylonitrile) [9008-18-3] NBR (64), is another commercially significant random copolymer. This mbber is manufactured by free-radical emulsion polymerization. Important producers include Copolymer Rubber and Chemical (Nysyn), B. F. Goodrich (Hycar), Goodyear (Chemigum), and Uninoyal (Paracdl). The total U.S. production of nitrile mbber (NBR) in 1990 was 95.6 t (65). The most important property of NBR mbber is its oil resistance. It is used in oil well parts, fuels, oil, and solvents (64) (see Elastomers, synthetic— nitrile rubber). [Pg.184]

Step growth polymerization. Important polymers manufactured by step growth are polyamides (nylons), polyesters, and polyurethanes. [Pg.100]

Chain growth polymerization. Important polymers manufactured hy chain growth are polyethylene, polystyrene, polyacrylonitrile, and polymethacrylates. [Pg.100]

Isospecific polymerization. Important features of stereoregular isospecific polymerization of propylene, and in general, terminal alkenes, are as follows 125,254,32 328... [Pg.759]

Solution polymerization. Solution polymerization involves polymerization of a monomer in a solvent in which both the monomer (reactant) and polymer (product) are soluble. Monomers are polymerized in a solution that can be homogeneous or heterogeneous. Many free radical polymerizations are conducted in solution. Ionic polymerizations are almost exclusively solution processes along with many Ziegler-Natta polymerizations. Important water-soluble polymers that can be prepared in aqueous solution include poly(acrylic acid), polyacrylamide, poly(vinyl alcohol), and poly(iV-vinylpyrrolidinone). Poly(methyl methacrylate), polystyrene, polybutadiene, poly(vinyl chloride), and poly(vinylidene fluoride) can be polymerized in organic solvents. [Pg.596]

Condensation polymers n., by chain mechanisms Step-growth polymers produced by a polymerization reaction in which the elimination of a small molecule, often water, has occurred, e.g., produced by a condensation polymerization. Important examples include the polyesters, polyamides and phenol-, urea- and melamine-formaldehyde polymers. Odian GC (2004) Principles of polymerization. John Wiley and Sons Inc., New York. [Pg.221]

Nomura, K., Naga, N., Miki, M., Yanagi, K., Imai, A. Synthesis of various nonbridged titanium(IV) cyclopentadienyl-aryloxy complexes of the type CpTi(OAr)X2 and their use in the catalysis of alkene polymerization. Important roles of substituents on both aryloxy and cyciopentadienyi groups. Organometallics, 17, 2152-2154 (1998). [Pg.123]

Before we can explore how reactor conditions can be chosen, we require some measure of reactor performance. For polymerization reactors, the most important measure of performance is the distribution of molecular weights in the polymer product. The distribution of molecular weights dictates the mechanical properties of the polymer. For other types of reactors, three important parameters are used to describe their performance ... [Pg.22]

Polymerization reactions. Polymers are characterized by the distribution of molecular w eight about the mean as well as by the mean itself. The breadth of this distribution depends on whether a batch or plug-flow reactor is used on the one hand or a continuous well-mixed reactor on the other. The breadth has an important influence on the mechanical and other properties of the polymer, and this is an important factor in the choice of reactor. [Pg.33]

CHi=CMeCOOH. Colourless prisms m.p. 15-16 C, b.p. 160-5 C. Manufactured by treating propanone cyanohydrin with dilute sulphuric acid. Polymerizes when distilled or when heated with hydrochloric acid under pressure, see acrylic acid polymers. Used in the preparation of synthetic acrylate resins the methyl and ethyl esters form important glass-like polymers. [Pg.258]

The kinetics of this type of polymerization are the same as for simple condensation for this reason, the use of the term polycondensation is perhaps more appropriate. Unless kinetic evidence suggests otherwise, polymerizations involving the formation of chain polymers from cyclic compounds, following ring scission, are classed as condensation polymerizations. Some important con-... [Pg.321]

An important group of polymers used as moulding resins and in extruded forms (e.g. film). Can be electroplated. Useful polymerization is by Ziegler catalysis and gives an isotactic material. U.S. production 1983 1 -7 megatonnes. [Pg.329]

CHjlCH COOH. Colourless liquid having an odour resembling that of ethanoic acid m.p. 13 C, b.p. I4I°C. Prepared by oxidizing propenal with moist AgO or treating -hy-droxypropionitrile with sulphuric acid. Slowly converted to a resin at ordinary temperatures. Important glass-like resins are now manufactured from methyl acrylate, see acrylic resins. Propenoic acid itself can also be polymerized to important polymers - see acrylic acid polymers. [Pg.329]

M.p. 296 C. Accepts an electron from suitable donors forming a radical anion. Used for colorimetric determination of free radical precursors, replacement of Mn02 in aluminium solid electrolytic capacitors, construction of heat-sensitive resistors and ion-specific electrodes and for inducing radical polymerizations. The charge transfer complexes it forms with certain donors behave electrically like metals with anisotropic conductivity. Like tetracyanoethylene it belongs to a class of compounds called rr-acids. tetracyclines An important group of antibiotics isolated from Streptomyces spp., having structures based on a naphthacene skeleton. Tetracycline, the parent compound, has the structure ... [Pg.389]

Protein adsorption has been studied with a variety of techniques such as ellipsome-try [107,108], ESCA [109], surface forces measurements [102], total internal reflection fluorescence (TIRE) [103,110], electron microscopy [111], and electrokinetic measurement of latex particles [112,113] and capillaries [114], The TIRE technique has recently been adapted to observe surface diffusion [106] and orientation [IIS] in adsorbed layers. These experiments point toward the significant influence of the protein-surface interaction on the adsorption characteristics [105,108,110]. A very important interaction is due to the hydrophobic interaction between parts of the protein and polymeric surfaces [18], although often electrostatic interactions are also influential [ 116]. Protein desorption can be affected by altering the pH [117] or by the introduction of a complexing agent [118]. [Pg.404]

Film stability is a primary concern for applications. LB films of photopoly-merizable polymeric amphiphiles can be made to crosslink under UV radiation to greatly enhance their thermal stability while retaining the ordered layered structure [178]. Low-molecular-weight perfluoropolyethers are important industrial lubricants for computer disk heads. These small polymers attached to a polar head form continuous films of uniform thickness on LB deposi-... [Pg.560]

For structures with a high curvature (e.g., small micelles) or situations where orientational interactions become important (e.g., the gel phase of a membrane) lattice-based models might be inappropriate. Off-lattice models for amphiphiles, which are quite similar to their counterparts in polymeric systems, have been used to study the self-assembly into micelles [ ], or to explore the phase behaviour of Langmuir monolayers [ ] and bilayers. In those systems, various phases with a nematic ordering of the hydrophobic tails occur. [Pg.2377]

The C-C linkage in tire polymeric [60]fullerene composite is highly unstable and, in turn, tire reversible [2+2] phototransfonnation leads to an almost quantitative recovery of tire crystalline fullerene. In contrast tire similarly conducted illumination of [70]fullerene films results in an irreversible and randomly occurring photodimerization. The important aspect which underlines tire markedly different reactivity of tire [60]fullerene polymer material relative to, for example, tire analogous [36]fullerene composites, is tire reversible transfomration of tire fomrer back to the initial fee phase. [Pg.2417]


See other pages where Polymerization importance is mentioned: [Pg.283]    [Pg.146]    [Pg.405]    [Pg.164]    [Pg.5590]    [Pg.306]    [Pg.220]    [Pg.484]    [Pg.283]    [Pg.146]    [Pg.405]    [Pg.164]    [Pg.5590]    [Pg.306]    [Pg.220]    [Pg.484]    [Pg.18]    [Pg.23]    [Pg.24]    [Pg.25]    [Pg.111]    [Pg.165]    [Pg.165]    [Pg.219]    [Pg.292]    [Pg.319]    [Pg.321]    [Pg.329]    [Pg.419]    [Pg.420]    [Pg.420]    [Pg.421]    [Pg.421]    [Pg.541]    [Pg.2371]    [Pg.2378]    [Pg.2515]    [Pg.2526]    [Pg.2574]   
See also in sourсe #XX -- [ Pg.3 ]




SEARCH



© 2024 chempedia.info