Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer surface adhesion

Viswanathan K, Ozhalici H, Elkins CL, Heisey C, Ward TC, Long TE. Multiple hydrogen bonding for reversible polymer surface adhesion. Langmuir 2006 22 1099-1105. [Pg.101]

Chapter 7 discusses the use of AFM to investigate the adhesion of particles to polymer surfaces. Adhesion of particles on membrane surfaces is the main cause of fouhng. In the beginning of the chapter, a short note on DLVO (Derjaguin, Landau, Verwey, and Overbeek) theory (a theory of the stability of colloidal dispersions) has been given. However, few studies of adhesion in the membrane field by AFM have been reported. The pioneer work of Bowen s school has been described. [Pg.204]

A number of friction studies have been carried out on organic polymers in recent years. Coefficients of friction are for the most part in the normal range, with values about as expected from Eq. XII-5. The detailed results show some serious complications, however. First, n is very dependent on load, as illustrated in Fig. XlI-5, for a copolymer of hexafluoroethylene and hexafluoropropylene [31], and evidently the area of contact is determined more by elastic than by plastic deformation. The difference between static and kinetic coefficients of friction was attributed to transfer of an oriented film of polymer to the steel rider during sliding and to low adhesion between this film and the polymer surface. Tetrafluoroethylene (Telfon) has a low coefficient of friction, around 0.1, and in a detailed study, this lower coefficient and other differences were attributed to the rather smooth molecular profile of the Teflon molecule [32]. [Pg.441]

An important newer use of fluorine is in the preparation of a polymer surface for adhesives (qv) or coatings (qv). In this apphcation the surfaces of a variety of polymers, eg, EPDM mbber, polyethylene—vinyl acetate foams, and mbber tine scrap, that are difficult or impossible to prepare by other methods are easily and quickly treated. Fluorine surface preparation, unlike wet-chemical surface treatment, does not generate large amounts of hazardous wastes and has been demonstrated to be much more effective than plasma or corona surface treatments. Figure 5 details the commercially available equipment for surface treating plastic components. Equipment to continuously treat fabrics, films, sheet foams, and other web materials is also available. [Pg.131]

Adhesives. High concentration (>10%) solutions of poly(ethylene oxide) exhibit wet tack properties that are used in several adhesive appHcations. The tackiness disappears when the polymer dries and this property can be successfully utilized in appHcations that require adhesion only in moist conditions. PEO is also known to form solution complexes with several phenoHc and phenoxy resins. Solution blends of PEO and phenoxy resins are known to exhibit synergistic effects, leading to high adhesion strength on aluminum surfaces. Adhesive formulations are available from the manufacturers. [Pg.344]

Treatment of polymer surfaces to improve their wetting, water repulsion, and adhesive properties is now a standard procedure. The treatment is designed to change the chemistry of the outermost groups in the polymer chain without affecting bulk polymer properties. Any study of the effects of treatment therefore requires a technique that is specific mostly to the outer atomic layers this is why SSIMS is extensively used in this area. [Pg.100]

Koberstein et al., J.T, Creating smart polymer surfaces with selective adhesion properties. J. Adhes., 66, 229-245 (1998). [Pg.242]

Israelachvili and his colleagues have used the SEA to study the interactions between surface layers of surfactant and of other molecules representing functionalised polymer chains, adhesion promoters or additives. Typically a monolayer of the molecule concerned is deposited onto cleaved mica sheets. The values of surface energies obtained from the JKR equation (Eq. 18) throw some interesting light on the nature and roughness of surface layers in contact. [Pg.341]

Lucie, S., Kovacevic, V., Packham, D.E., Bogner, A., Gerzina, A., Stearate-modified calcium carbonate fillers and their effect on the properties of polyvinyl acetate, composites. Proc. 2nd Int. Symp. Polymer Surface Modification Relevance to Adhesion, Newark, NJ, 24-26 May, 1999. [Pg.347]

A WBL can also be formed within the silicone phase but near the surface and caused by insufficiently crosslinked adhesive. This may result from an interference of the cure chemistry by species on the surface of substrate. An example where incompatibility between the substrate and the cure system can exist is the moisture cure condensation system. Acetic acid is released during the cure, and for substrates like concrete, the acid may form water-soluble salts at the interface. These salts create a weak boundary layer that will induce failure on exposure to rain. The CDT of polyolefins illustrates the direct effect of surface pretreatment and subsequent formation of a WBL by degradation of the polymer surface [72,73]. [Pg.698]

K. L. Mittal, Polymer Surface Modification Relevance to adhesion, VSP, Utrecht, Netherlands, 1996. [Pg.528]

Corona discharge treatment results in the formation of high-polarity functional groups, such as carbonyl, at the polymer surface. Various mechanisms have been proposed for the improvement of the adhesive properties... [Pg.824]

The authors of [99] proposed a calorimetric method for determining the degree of the polymer-filler interaction the exothermal effect manifests itself in the high energy of the polymer-filler adhesion, the endothermal effect is indicative of a poor, if any, adhesion. The method was used to assess the strength of the PVC-Aerosil interaction with Aerosil surface subjected to different pre-treatments... [Pg.11]

Moreover, the interaction of the surface of the fillter with the matrix is usually a procedure much more complicated than a simple mechanical effect. The presence of a filler actually restricts the segmental and molecular mobility of the polymeric matrix, as adsorption-interaction in polymer surface-layers into filler-particles occurs. It is then obvious that, under these conditions, the quality of adhesion can hardly be quantified and a more thorough investigation is necessary. [Pg.150]

Reactive species can be generated prior to monomer exposure (preirradiation grafting), during contact with monomer, or, after the polymer surface has been saturated with monomer and isolated (postirradiation grafting). The radiation-induced (y-ray and EB) graft copolymerization of AA and vinyl acetate monomer onto PE surface has been reported [170]. The grafted sheets show excellent bonding with an epoxy adhesive and enhanced adhesion with aluminum. [Pg.871]

A surface is that part of an object which is in direct contact with its environment and hence, is most affected by it. The surface properties of solid organic polymers have a strong impact on many, if not most, of their apphcations. The properties and structure of these surfaces are, therefore, of utmost importance. The chemical stmcture and thermodynamic state of polymer surfaces are important factors that determine many of their practical characteristics. Examples of properties affected by polymer surface stmcture include adhesion, wettability, friction, coatability, permeability, dyeabil-ity, gloss, corrosion, surface electrostatic charging, cellular recognition, and biocompatibility. Interfacial characteristics of polymer systems control the domain size and the stability of polymer-polymer dispersions, adhesive strength of laminates and composites, cohesive strength of polymer blends, mechanical properties of adhesive joints, etc. [Pg.871]

FIGURE 31.9 Change in the peel strength and radiation dose of ethylene-propylene-diene monomer (EPDM)/EPDM joint [Eo/y Eo/yl EPDM/natural mbber (NR)/EPDM joint [Eo/y NR Eo/yl and EPDM/Al joint [Eo/y Al]. (From Sen Majumder, P. and Bhowmick, A.K., in Polymer Surface Modification Relevance to Adhesion, Vol. It, Mittal, K.L., Ed., VSP, Utrecht, The Netherlands, 2000,425. With permission.)... [Pg.890]


See other pages where Polymer surface adhesion is mentioned: [Pg.643]    [Pg.566]    [Pg.643]    [Pg.566]    [Pg.457]    [Pg.124]    [Pg.115]    [Pg.593]    [Pg.238]    [Pg.305]    [Pg.331]    [Pg.331]    [Pg.479]    [Pg.44]    [Pg.219]    [Pg.335]    [Pg.414]    [Pg.460]    [Pg.460]    [Pg.538]    [Pg.541]    [Pg.553]    [Pg.822]    [Pg.824]    [Pg.359]    [Pg.175]    [Pg.147]    [Pg.178]    [Pg.382]    [Pg.479]    [Pg.556]    [Pg.757]    [Pg.872]    [Pg.874]   
See also in sourсe #XX -- [ Pg.276 ]




SEARCH



Adhesives surface adhesion

Polymers adhesion

Polymers adhesive

Surface adhesion

© 2024 chempedia.info