Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cure chemistry

A second type of uv curing chemistry is used, employing cationic curing as opposed to free-radical polymerization. This technology uses vinyl ethers and epoxy resins for the oligomers, reactive resins, and monomers. The initiators form Lewis acids upon absorption of the uv energy and the acid causes cationic polymerization. Although this chemistry has improved adhesion and flexibility and offers lower viscosity compared to the typical acrylate system, the cationic chemistry is very sensitive to humidity conditions and amine contamination. Both chemistries are used commercially. [Pg.248]

RTV Silicone Chemistry. There are two basic cure chemistries used by RTV sihcones the acetoxy-based and the alkoxy-based cure systems. Acetoxy-based RTV sihcones were first commercialized in the early 1960s (422,423). The general chemical reactions of these first-generation products are shown in Figure 8. [Pg.58]

The best oxidation inhibitors are not usually the best antio2onants (qv). A disubstituted i ra-phenylenediamine such as AJ-isopropyl-AT-phenyl- -phenylenediamine is often selected for that purpose. -Phenylenediamine derivatives iaterfere with cure chemistry and scorchiness, and can stain objects ia contact with the vulcani2ate (114). On balance, /V-(1,3-dimethy1buty1)-/V-phenyl- -phenylenediamine and phenyl /to1y1- -pheny1enediamines have the best combination of properties. They are less scorchy and provide excellent o2one and heat resistance. Additional protection is gained ia blends with a small amount of EPDM mbber (126). [Pg.544]

Since the locus of failure can clearly distinguish between adhesive and cohesive failures, the following discussion separates loss of adherence into loss of adhesion and loss of cohesion. In the loss of cohesion it is the polysiloxane network that degrades, which can be dealt with independently of the substrate. The loss of adhesion, however, is dependent on the cure chemistry of the silicone, the chemical and physical properties of the substrates, and the specific mechanisms of adhesion involved. [Pg.697]

A WBL can also be formed within the silicone phase but near the surface and caused by insufficiently crosslinked adhesive. This may result from an interference of the cure chemistry by species on the surface of substrate. An example where incompatibility between the substrate and the cure system can exist is the moisture cure condensation system. Acetic acid is released during the cure, and for substrates like concrete, the acid may form water-soluble salts at the interface. These salts create a weak boundary layer that will induce failure on exposure to rain. The CDT of polyolefins illustrates the direct effect of surface pretreatment and subsequent formation of a WBL by degradation of the polymer surface [72,73]. [Pg.698]

The role played by the various ingredients in the composition of sealant, and in particular on the durability of adhesion has been discussed recently [77]. Inert plasticizers, such as trimethylsilyl-endblocked-PDMS, are typically added to silicone sealant compositions in order to adjust the rheology of the uncured sealant. They result in a reduction of the modulus and hardness of the cured sealant. Differences in the durability of silicone sealants are found to be due to differences in their cure chemistry, and more specifically to the nature and... [Pg.700]

The final physical properties of thermoset polymers depend primarily on the network structure that is developed during cure. Development of improved thermosets has been hampered by the lack of quantitative relationships between polymer variables and final physical properties. The development of a mathematical relationship between formulation and final cure properties is a formidable task requiring detailed characterization of the polymer components, an understanding of the cure chemistry and a model of the cure kinetics, determination of cure process variables (air temperature, heat transfer etc.), a relationship between cure chemistry and network structure, and the existence of a network structure parameter that correlates with physical properties. The lack of availability of easy-to-use network structure models which are applicable to the complex crosslinking systems typical of "real-world" thermosets makes it difficult to develop such correlations. [Pg.190]

The effective development of blocked isocyanate based coatings requires a complete understanding of the cure chemistry. Many materials have been identified which will improve cure response. Often these are reported as deblocking catalysts even though no direct evidence exists to support this claim. Most of these materials are well known catalysts of the cure reaction between hydroxyl and isocyanate and may be improving cure response solely by catalyzing this reaction. Effective development of catalyst systems requires a better understanding of the effect of catalysts on cure. [Pg.242]

Coatings based on these different crosslinkers have substantially different cure kinetics, network structure, and durability. Formation and degradation of crosslink structure in urethane and melamine crossllnked coatings are compared in this paper. Key differences in cure chemistry and kinetics which result differences in coating performance are identified. The chemistries of network structure degradation on exposure to UV light and water are discussed in terms of their effect on ultimate durability. [Pg.77]

A novel cure chemistry employed for addition poly(imides) has recently been published. The successful preparation of 4-aminobenzocyclobutene allowed the synthesis of benzocyclobutene-terminated imide oligomers and bisfbenzocylobutenes) (17). The benzocyclobutene group is a latent diene which isomerizes to o-guinodimethane at temperatures of about 200 °C and may homo- and/or co-polymerize for example with bismaleimide (83). Details on the benzocyclobutene chemistry are described in chapter I of this book. [Pg.216]

Component failure is so crucial that Caterpillar does not trust any other company to make these rubber products—not even Goodyear or Firestone. Caterpillar makes its own rubber component formulations. Rubber component failure is a multilevel issue performance depends on the rubber parts, which depend on the rubber component-based materials. This, in turn, depends on the failure mechanics properties of these materials, which are affected by rubber curing chemistry. In the end, the design- and manufacturing-related issues depend on quantum chemistry of sulfur links. This is another problem in which the transformation process goes from molecules to materials to market and has the proverbial brick wall in between. [Pg.84]

Fujimoto and co-workers reported in 1969 on the use of a new high-temperature ATR apparatus that they constructed for studying, among other things, the role of the type of third monomer on the peroxide curing-chemistry of EPDM [73, 74]. EPDM grades containing either ENB, DCPD, HD or MNB as a third monomer were compounded with... [Pg.227]

To be able to relate mechanical properties to the composition of rubbery compounds and curing chemistry it is essential to understand the network topology of the resultant cured materials. [Pg.354]

Analysis of chemical conversion and cure chemistry is another way of studying network structures. Several techniques are used for this purpose, e.g., optical spectroscopy [12], high-resolution NMR spectroscopy and titration of non-reacted functional groups. The spectroscopic methods can be used for quantitative analysis of crosslinks [13-15]. Chemical conversion is usually closely related to the network density. However, no exact quantitative information on the network structure can be obtained because reacted groups can form... [Pg.354]

Ranadive, A.S. (1994) Vanilla cultivation, curing, chemistry, technology and commercial products. In Charalambous, G. (ed.) Spices, Herbs and Edible Fungi. Elsevier, Amsterdam, pp. 517-577. [Pg.310]


See other pages where Cure chemistry is mentioned: [Pg.232]    [Pg.233]    [Pg.425]    [Pg.57]    [Pg.58]    [Pg.495]    [Pg.544]    [Pg.545]    [Pg.543]    [Pg.544]    [Pg.689]    [Pg.700]    [Pg.823]    [Pg.497]    [Pg.288]    [Pg.731]    [Pg.674]    [Pg.675]    [Pg.676]    [Pg.119]    [Pg.121]    [Pg.288]    [Pg.224]    [Pg.225]    [Pg.334]    [Pg.334]    [Pg.222]    [Pg.249]    [Pg.169]    [Pg.226]    [Pg.353]    [Pg.653]    [Pg.37]   


SEARCH



Adhesives chemistry, cure reactions

Cure chemistry applications

Cure chemistry reaction

Rates and Chemistry of Cure Reactions

© 2024 chempedia.info