Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer phase development

The type and amount of blowing agent governs the amount of gas generated, the rate of generation, the pressure that can be developed to expand the polymer phase, and the amount of gas lost from the system relative to the amount retained in the cells. [Pg.404]

Since most polymers, including elastomers, are immiscible with each other, their blends undergo phase separation with poor adhesion between the matrix and dispersed phase. The properties of such blends are often poorer than the individual components. At the same time, it is often desired to combine the process and performance characteristics of two or more polymers, to develop industrially useful products. This is accomplished by compatibilizing the blend, either by adding a third component, called compatibilizer, or by chemically or mechanically enhancing the interaction of the two-component polymers. The ultimate objective is to develop a morphology that will allow smooth stress transfer from one phase to the other and allow the product to resist failure under multiple stresses. In case of elastomer blends, compatibilization is especially useful to aid uniform distribution of fillers, curatives, and plasticizers to obtain a morphologically and mechanically sound product. Compatibilization of elastomeric blends is accomplished in two ways, mechanically and chemically. [Pg.299]

The desorption and termination constants were calculated for a copolymer from the corresponding homopolymer constants as discussed in Nomura and Fujita (12.) The homopolymer desorption coefficients were calculated from the appropriate chain transfer constants and radical diffusivities in the aqueous and polymer phases using an extension of the desorption theory developed by Nomura and Fujita (12.). The homopolymer termination constants were corrected for the Trommsdorff effect by using the Friis and Hamielec (12) correlation. [Pg.364]

This section is primarily concerned with the behaviour of simple homo-polymers. The development of viscoelastic theory was intimately linked with the study of polymeric species. This area of activity has led the way in the development of rheological models and experimental design and so is a very important area for the proto-rheologist to understand. So far in this chapter we have taken the approach of developing phase diagrams from a rheological perspective in order to understand linear viscoelastic... [Pg.179]

The main limitation of these CSPs is their limited pressure stability, which makes them not very suitable for HPLC application. However, they have proved to be an excellent tool for the preparative separation of drugs by low-pressure HPLC. To make these CSPs accessible to HPLC, silica gel-based phases were developed. " This type of phase is available from Merck (Darmstadt, Germany) under the name Chiraspher. Polymer phases of different types have been developed by Okamoto s group. > They are prepared by the asymmetric polymerization of triphenylmethyl-methacrylate monomers. The original character of these polymers is that they do not possess any chiral centre and therefore their chirality is only due to their helicity. However, clear mechanisms have not been proposed... [Pg.476]

Up to now, a variety of non-zeolite/polymer mixed-matrix membranes have been developed comprising either nonporous or porous non-zeolitic materials as the dispersed phase in the continuous polymer phase. For example, non-porous and porous silica nanoparticles, alumina, activated carbon, poly(ethylene glycol) impregnated activated carbon, carbon molecular sieves, Ti02 nanoparticles, layered materials, metal-organic frameworks and mesoporous molecular sieves have been studied as the dispersed non-zeolitic materials in the mixed-matrix membranes in the literature [23-35]. This chapter does not focus on these non-zeoUte/polymer mixed-matrix membranes. Instead we describe recent progress in molecular sieve/ polymer mixed-matrix membranes, as much of the research conducted to date on mixed-matrix membranes has focused on the combination of a dispersed zeolite phase with an easily processed continuous polymer matrix. The molecular sieve/ polymer mixed-matrix membranes covered in this chapter include zeolite/polymer and non-zeolitic molecular sieve/polymer mixed-matrix membranes, such as alu-minophosphate molecular sieve (AlPO)/polymer and silicoaluminophosphate molecular sieve (SAPO)/polymer mixed-matrix membranes. [Pg.333]

Small-pore zeolite Nu-6(2) has a NSI-type structure and two different types of eight-membered-ring channels with limiting dimensions of 2.4 and 3.2 A [54]. Gorgojo and coworkers developed mixed-matrix membranes using Nu-6(2) as the dispersed zeolite phase and polysulfone Udel as the continuous organic polymer phase [55]. These mixed-matrix membranes showed remarkably enhanced H2/ CH4 selectivity compared to the bare polysulfone membrane. The H2/CH4 selectivity increased from 13 for the bare polysulfone membrane to 398 for the Nu-6(2)/ polysulfone mixed-matrix membranes. This superior performance of the Nu-6(2)/ polysulfone mixed-matrix membranes is attributed to the molecular sieving role played by the selected Nu-6(2) zeoHte phase in the membranes. [Pg.338]

A third type of synthetic polymer-based chiral stationary phase, developed hy Blaschke. is produced when a chiral selecior is either incorporated within the polymer network or attached as pendant groups onto the polymer matrix. Both arc analogous to methods used lo produce polymeric chiral stationary phases for gc. [Pg.363]

Molecularly imprinted composite membranes have been developed based on the functionalisation of a commercial membrane with an MIP in order to improve the mechanical stability of the imprinted polymer phase, similarly to the preparation of MIP composite beads, discussed in Sect. 2.2.2. [Pg.73]

The sorption coefficient (K) in Equation (2.84) is the term linking the concentration of a component in the fluid phase with its concentration in the membrane polymer phase. Because sorption is an equilibrium term, conventional thermodynamics can be used to calculate solubilities of gases in polymers to within a factor of two or three. However, diffusion coefficients (D) are kinetic terms that reflect the effect of the surrounding environment on the molecular motion of permeating components. Calculation of diffusion coefficients in liquids and gases is possible, but calculation of diffusion coefficients in polymers is much more difficult. In the long term, the best hope for accurate predictions of diffusion in polymers is the molecular dynamics calculations described in an earlier section. However, this technique is still under development and is currently limited to calculations of the diffusion of small gas molecules in amorphous polymers the... [Pg.48]

Mixed-matrix membranes have been a subject of research interest for more than 15 years [28-33], The concept is illustrated in Figure 8.10. At relatively low loadings of zeolite particles, permeation occurs by a combination of diffusion through the polymer phase and diffusion through the permeable zeolite particles. The relative permeation rates through the two phases are determined by their permeabilities. At low loadings of zeolite, the effect of the permeable zeolite particles on permeation can be expressed mathematically by the expression shown below, first developed by Maxwell in the 1870s [34],... [Pg.314]

The preceding discussions illustrate that membranes have shown great potential as an alternative for olefin/paraffin separation, yet the performance of current membranes is insufficient for commercial deployment of this technology. Advanced material development is highly desired to improve the membrane properties and reduce cost. Another possible approach involves hybrid membranes with zeolites or CMS incorporated in a continuous polymer phase. More discussion in this regard will be covered later in this chapter. [Pg.154]

Table 13.3 presents the expressions for the rate constants applied in this work. The parameters are taken mostly from the work of Xie et al. [6], A distinctive feature of the numerical simulation of the influence of gel effect on the termination in the polymer-phase is described by a relation proposed by Kipparisides et al. [5], This combination of parameters gives realistic results on modeling both the reaction dynamics and the development of the molecular-weight distribution, reproducing closely experimental data (see Figure 13.6). The subscript 1 refers to the monomer phase, 2 to the polymer phase, and 22 to the polymer-phase after the critical conversion Xf. In addition, Table 13.4 presents first-order constants for usual initiators. [Pg.378]

The liquid phase and polymer phase activity coefficients were combined from different methods to see if better estimation accuracy could be obtained, since some estimation methods were developed for estimation of activity coefficients in polymers (e.g. GCFLORY, ELBRO-FV) and others have their origins in liquid phase activity coefficient estimation (e.g. UNIFAC). The UNIFAC liquid phase activity coefficient combined with GCFLORY (1990 and 1994 versions) and ELBRO-FV polymer activity coefficients were shown to be the combinations giving the best estimations out of all possible combinations of the different methods. Also included in Table 4-3 are estimations of partition coefficients made using the semi-empirical group contribution method referred to as the Retention Indices Method covered in the next section. [Pg.100]

Polymerisation. Emulsified droplets containing a monomer can react with a second monomer soluble in the continuous phase to form a membrane at the interface (i.e. diamine reacting with a acid dichloride). This is called interfacial polymerization. Many derivative methods can be set-up from this method, using pre-polymers in place of monomers, inversing the continuous and dispersed phases, developing a radical reaction. Covering all possible methods is not possible here. [Pg.31]

Solid-phase microextraction (SPME) — is a procedure originally developed for sample preconcentration in gas chromatography (GC). In this procedure a small-diameter fused silica optical fiber, coated with a liquid polymer phase such as poly(dimethylsiloxane), is immersed in an aqueous sample solution. The -> analytes partition into the polymer phase and are then thermally desorbed in the GC injector on the column. The same polymer coating is used as a stationary phase of capillary GC columns. The extraction is a non-exhaustive liquid-liquid extraction with the convenience that the organic phase is attached to the fiber. This fiber is contained in a syringe, which protects it and simplifies introduction of the fiber into a GC injector. Both uncoated and coated fibers with films of different GC stationary phases can be used. SPME can be successfully applied to the analysis of volatile chlorinated organic compounds, such as chlorinated organic solvents and substituted benzenes as well as nonvolatile chlorinated biphenyls. [Pg.617]

Chemical synthesis assisted by soluble polymers originally developed as an alternative to solid phase synthesis is now undergoing a second period of expansion. Just like in the early days, the desire to combine the advantages of solution chemistry with those of reactions on a solid phase has triggered this development. Soluble polymers can provide this and have therefore be-... [Pg.326]

A recently developed technique, i.e. solid-phase microextraction (SPME), which collects vapors on a micro-liber coated with a gas chromatographic polymer phase (Chai and Pawliszyn, 1995 Grote and Pawliszyn, 1997), may be more promising than typical PSDs for long-term sampling as it permits the entire collected sample to be analyzed. The SPME liber can be exposed directly for rapid assessment of air quality or withdrawn into a tube that controls diffusion to the fiber for longterm sampling. [Pg.114]


See other pages where Polymer phase development is mentioned: [Pg.68]    [Pg.406]    [Pg.464]    [Pg.212]    [Pg.574]    [Pg.820]    [Pg.497]    [Pg.220]    [Pg.6]    [Pg.88]    [Pg.102]    [Pg.129]    [Pg.147]    [Pg.336]    [Pg.110]    [Pg.574]    [Pg.483]    [Pg.83]    [Pg.277]    [Pg.277]    [Pg.20]    [Pg.221]    [Pg.146]    [Pg.68]    [Pg.22]    [Pg.164]    [Pg.217]    [Pg.541]    [Pg.90]    [Pg.104]    [Pg.169]    [Pg.192]    [Pg.398]   
See also in sourсe #XX -- [ Pg.149 , Pg.150 , Pg.151 , Pg.152 , Pg.153 , Pg.154 , Pg.155 , Pg.156 , Pg.157 , Pg.158 , Pg.159 , Pg.160 , Pg.161 , Pg.162 , Pg.163 , Pg.164 , Pg.165 ]




SEARCH



Development phases

© 2024 chempedia.info