Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymers components

Performance Characteristics Polyester resins undergo a rapid transformation from a viscous Hquid to a soHd plastic state that comprises a three-dimensional cross-linked polymer stmcture. The level of polyester polymer unsaturation determines essential performance characteristics (Table 7), although polymer components can influence subtle features that affect thermal, electrical, and mechanical performance as defined by ASTM procedures. [Pg.320]

With all these problems, why use polymers at all Well, complicated parts performing several functions can be moulded in a single operation. Polymer components can... [Pg.290]

In the 1990s this approach became more common in order to ensure sufficient compressive strength with the trend to lower bulk densities. Furthermore the proportion of SAN to polyol has been increased to about 40%. This may lead to serious stability problems and care must be taken to control the size and distribution of the particles and prevent agglomeration. Polymer polyols using polystyrene as the polymer component have recently become available (Postech-Shell) and are claimed to exhibit good stability, low viscosity and less discolouration as well as providing price advantages. [Pg.796]

The minimum service temperature is determined primarily by the Tg of the soft phase component. Thus the SBS materials ctm be used down towards the Tg of the polybutadiene phase, approaching -100°C. Where polyethers have been used as the soft phase in polyurethane, polyamide or polyester, the soft phase Tg is about -60°C, whilst the polyester polyurethanes will typically be limited to a minimum temperature of about 0°C. The thermoplastic polyolefin rubbers, using ethylene-propylene materials for the soft phase, have similar minimum temperatures to the polyether-based polymers. Such minimum temperatures can also be affected by the presence of plasticisers, including mineral oils, and by resins if these become incorporated into the soft phase. It should, perhaps, be added that if the polymer component of the soft phase was crystallisable, then the higher would also affect the minimum service temperature, this depending on the level of crystallinity. [Pg.876]

Adhesion depends on a number of factors. Good adhesion is defined by most customers as substrate failure. The major adhesive manufacturers possess equipment that allows them to make bonds with customer substrates under conditions that closely simulate actual packaging lines. These bonds are peeled either automatically or by hand to gauge adhesion. The most important factors influencing adhesion are the wet-out of the substrate, partieularly by the polymer component of the adhesive system, and the specific adhesion with the substrate. Choice of resin is critical for both. Rosin, rosin esters and terpene phenolics are eommonly added for these purposes in EVA and EnBA-based systems. Adhesion at low temperatures is also influenced by the overall toughness of the system at the test temperature. [Pg.745]

A longer column is preferred because of a greater processing capacity nd an increased number of plates, as long as the back pressure does not exceed the upper limit and the nonuniform displacement of the solution and the solvent is not serious. The theoretical plate in HOPC is defined as a section in the column in which equivalently full exchange of all of the polymer components... [Pg.627]

Thus, the impact of molecular weight of a PVC on the properties of the blends is complicated. It is closely related to the ratio of the two polymer components in the blending system. It is also related to the properties of TPU. Therefore, it should be considered in combination with other facts. [Pg.140]

A new process to develop interface vulcanization is grafting of selective accelerators onto a polymer chain, which in the subsequent process of vulcanization acts as an effective cure accelerator for the second polymer component in the blend. Beniska et al. [6] prepared SERFS blends where the polystyrene phase was grafted with the accelerator for curing SBR. Improved hardness, tensile strength, and abrasion resistance were obtained. Blends containing modified polystyrene and rw-1,4-polybutadiene showed similar characteristics as SBS triblock copolymers. [Pg.464]

We have found that proper choice of curatives and the effective modification of polymer components im-... [Pg.464]

The selective degradation of the preformed polymer component (polycarbonate/polystyrene) of graft copolymers by two phase alkaline hydrolysis provides a clean system for quantitative recovery and subsequent characterization of the graft [151]. [Pg.497]

Thermal analysis of homopolymer samples are simpler than those of blends. Separate thermal analysis of individual polymer components are made before doing the same for a blend in order to get more accurate and proper information on thermal characteristics. [Pg.655]

In the case of the filler localization in one of the polymer components of the mixture, an increase of the portion of the second unfilled polymer component in it entails sharp (by a factor of lO10) rise of a in the conducting polymer composite. In this case the filled phase should be continuous, i.e. its concentration should be higher than the percolation threshold. [Pg.137]

One more fact, important in practice, lies in that a of the compositions based on heterogeneous blends of polymers obtained by the method 3, depends considerably on mixing temperature Tm. This is bound up with a variation of the polymer viscosity with the temperature on being introduced into the polymer mixture, a filler becomes distributed mostly in the less viscous polymer and, if the viscosity of polymers is almost the same, it is distributed comparatively uniformly and a of the composition decreases. Therefore, the dependence of a of the conducting polymer composite on Tm has a minimum (by a factor of 102 to 104) in the Tm region when the viscosities of the polymer components are close. [Pg.137]

MW is the sum of the atomic weights of all the atoms in a molecule. It represents a measure of the chain length for the molecules that make up the polymer and in turn the plastic that influences processing performances to meet product performance (2). The MWD is basically the amount of component polymers that go to make up a polymer. Component polymers, in contrast, are a convenient term that recognizes the fact that all plastic materials comprise a mixture of different polymers of differing molecular weights. [Pg.448]

Since interactions at the molecular level between polymer components in the blends occur only in the amorphous phase, it is reasonable to assume that these effects are due to kinetic factors and, in particular, to the influence of a polymer component on the nucleation or crystallization kinetics of the other one. [Pg.206]

One technical difficulty that does beset recycling is that in many applications a variety of polymers are employed together in a complex way. It therefore becomes essential to distinguish between the various types of polymer in order to separate them. One system proposed (but not yet introduced anywhere in the world) is for the individual polymer components of complex articles such as automobiles to be identified using computer-scannable bar codes on each individual polymer component. [Pg.166]

Many commercially important polymers are actually mixtures of two or more polymer components that differ from one another in composition (for copolymers) or in microstructure (for homopolymers). Such mixtures may be the deliberate result of polymer blending, polymer synthesis, or the presence of different types of initiators or catalytic sites that produce different polymer chains. The ung spectral data of the whole polymer in such systems would include contributions from all its components, and as such should be treated with care. [Pg.174]

Multi-State Models. In studies of copolymerization kinetics and polymer microstructure, the use of reaction probability models can provide a convenient framework whereby the experimental data can be organized and interpreted, and can also give insight on reaction mechanisms. (1.,2) The models, however, only apply to polymers containing one polymer component. For polymers with mixtures of different components, the one-state simple models cannot be used directly. Generally multi-state models(11) are needed, viz. [Pg.175]

The final physical properties of thermoset polymers depend primarily on the network structure that is developed during cure. Development of improved thermosets has been hampered by the lack of quantitative relationships between polymer variables and final physical properties. The development of a mathematical relationship between formulation and final cure properties is a formidable task requiring detailed characterization of the polymer components, an understanding of the cure chemistry and a model of the cure kinetics, determination of cure process variables (air temperature, heat transfer etc.), a relationship between cure chemistry and network structure, and the existence of a network structure parameter that correlates with physical properties. The lack of availability of easy-to-use network structure models which are applicable to the complex crosslinking systems typical of "real-world" thermosets makes it difficult to develop such correlations. [Pg.190]

The program then requests specification as to type of polymer (line 320). If the "polymer" component is a collection of oligomers, the number of unique species is sought (line 360). The values for the mole (or weight) fraction, functionality and molecular weight of each species is then entered (lines 380-650). The number, site, and mass expectation values of the functionality and molecular weight (lines 650-810) are computed. The necessary site and mass distribution functions are also computed (lines 820-850). [Pg.206]

If the "polymer" component is a random copolymer, the number and weight average molecular weights is entered (lines 870 and 890). The mole fraction and monomer weight of the reactive monomer in the polymer is also entered (lines 910 and 960). The calculations assume that the reactive and nonreactive monomers have the same weight. [Pg.206]

Phenolic copolymers containing fluorophores (fluoroscein and calcein) were synthesized by SBP catalysis and used as array-based metal-ion sensor. Selectivity and sensitivity for metal ions could be controlled by changing the polymer components. Combinatorial approach was made for efficient screening of specific sensing of the metals. [Pg.236]

Id. Cyclic Condensation Polymers.—The foregoing discussion has proceeded under the assumption that the only products of bifunctional condensation are open chain polymer molecules—an assumption which obviously will not be exactly valid since cyclic polymers must always occur to some extent. The nature of the error introduced by this assumption will be examined in the course of the following discussion of cyclic polymer components. [Pg.326]

Ic. Ternary Systems Consisting of a Single Polymer Component in a Binary SolventMixture.—Three conditions must be satisfied for equilibrium between two liquid phases in a system of three components. In place of the conditions (1) we have... [Pg.548]

Suppose now that there is chosen as the third component (component 1) a monomeric substance in which each of the polymer components (2 and 3) is separately miscible in all proportions in the absence of the other. In order that this condition may be fulfilled, both X12 and xi3 are required to be less than one-half. Aside from this stipulation the actual values of these parameters are of minor importance only hence we may let Xi2 = xi3- As before we take X2 = Xz = x,... [Pg.555]

Ternary equilibrium curves calculated by Scott,who developed the theory given here, are shown in Fig. 124 for x = 1000 and several values of X23. Tie lines are parallel to the 2,3-axis. The solute in each phase consists of a preponderance of one polymer component and a small proportion of the other. Critical points, which are easily derived from the analogy to a binary system, occur at... [Pg.556]

For illustration consider SEC chromatograms obtained for two polymers on the same chromatographic system. One sample is a linear homopolymer while the other is a branched polymer with the same chemical composition. In the latter sample assume that the polymer components of different molecular weight have uniform branching characteristics so that all have similar molecular size/weight relationships. [Pg.108]

Polymonoallylamine, crosslinked or uncrosslinked ligno-sulfonate, condensed naphthalene sulfonate, or sulfonated vinyl aromatic polymer components react with each other in the presence of water to produce a gelatinous material [1510,1511]... [Pg.57]


See other pages where Polymers components is mentioned: [Pg.350]    [Pg.148]    [Pg.150]    [Pg.258]    [Pg.421]    [Pg.448]    [Pg.498]    [Pg.226]    [Pg.261]    [Pg.290]    [Pg.588]    [Pg.355]    [Pg.655]    [Pg.601]    [Pg.152]    [Pg.114]    [Pg.541]    [Pg.554]    [Pg.555]    [Pg.556]    [Pg.559]    [Pg.108]    [Pg.31]   
See also in sourсe #XX -- [ Pg.188 ]




SEARCH



© 2024 chempedia.info