Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyethylene/methacrylic

ABA ABS ABS-PC ABS-PVC ACM ACS AES AMMA AN APET APP ASA BR BS CA CAB CAP CN CP CPE CPET CPP CPVC CR CTA DAM DAP DMT ECTFE EEA EMA EMAA EMAC EMPP EnBA EP EPM ESI EVA(C) EVOH FEP HDI HDPE HIPS HMDI IPI LDPE LLDPE MBS Acrylonitrile-butadiene-acrylate Acrylonitrile-butadiene-styrene copolymer Acrylonitrile-butadiene-styrene-polycarbonate alloy Acrylonitrile-butadiene-styrene-poly(vinyl chloride) alloy Acrylic acid ester rubber Acrylonitrile-chlorinated pe-styrene Acrylonitrile-ethylene-propylene-styrene Acrylonitrile-methyl methacrylate Acrylonitrile Amorphous polyethylene terephthalate Atactic polypropylene Acrylic-styrene-acrylonitrile Butadiene rubber Butadiene styrene rubber Cellulose acetate Cellulose acetate-butyrate Cellulose acetate-propionate Cellulose nitrate Cellulose propionate Chlorinated polyethylene Crystalline polyethylene terephthalate Cast polypropylene Chlorinated polyvinyl chloride Chloroprene rubber Cellulose triacetate Diallyl maleate Diallyl phthalate Terephthalic acid, dimethyl ester Ethylene-chlorotrifluoroethylene copolymer Ethylene-ethyl acrylate Ethylene-methyl acrylate Ethylene methacrylic acid Ethylene-methyl acrylate copolymer Elastomer modified polypropylene Ethylene normal butyl acrylate Epoxy resin, also ethylene-propylene Ethylene-propylene rubber Ethylene-styrene copolymers Polyethylene-vinyl acetate Polyethylene-vinyl alcohol copolymers Fluorinated ethylene-propylene copolymers Hexamethylene diisocyanate High-density polyethylene High-impact polystyrene Diisocyanato dicyclohexylmethane Isophorone diisocyanate Low-density polyethylene Linear low-density polyethylene Methacrylate-butadiene-styrene... [Pg.958]

High-resolution TGA has been applied to decomposition studies on polymethyl methacrylate (PMMA), ethylene-vinyl acetate copolymer and acrylonitrile-butadiene-styrene terpolymer [47-50]. The results obtained on a supposedly pure sample of PMMA homopolymer indicated that a small quantity of impurity, possibly unreacted methyl monomer or even polyethylene methacrylate, is present. Conventional TGA does not resolve this impurity. [Pg.317]

POLYETHYLENE/METHACRYLIC ACID, AFTERTREATED TO METHACRY-LIC ACID, SODIUM SALT (E/MAA/NaMAA)... [Pg.151]

Dispersingagents, such as polyethylene polyamide succinimides or methacrylate-type copolymers, are added to motor oils to disperse low-temperature sludge formed in spark-ignition engines. [Pg.144]

Acryhc stmctural adhesives have been modified by elastomers in order to obtain a phase-separated, toughened system. A significant contribution in this technology has been made in which acryhc adhesives were modified by the addition of chlorosulfonated polyethylene to obtain a phase-separated stmctural adhesive (11). Such adhesives also contain methyl methacrylate, glacial methacrylic acid, and cross-linkers such as ethylene glycol dimethacrylate [97-90-5]. The polymerization initiation system, which includes cumene hydroperoxide, N,1S7-dimethyl- -toluidine, and saccharin, can be apphed to the adherend surface as a primer, or it can be formulated as the second part of a two-part adhesive. Modification of cyanoacrylates using elastomers has also been attempted copolymers of acrylonitrile, butadiene, and styrene ethylene copolymers with methylacrylate or copolymers of methacrylates with butadiene and styrene have been used. However, because of the extreme reactivity of the monomer, modification of cyanoacrylate adhesives is very difficult and material purity is essential in order to be able to modify the cyanoacrylate without causing premature reaction. [Pg.233]

In 1954 the surface fluorination of polyethylene sheets by using a soHd CO2 cooled heat sink was patented (44). Later patents covered the fluorination of PVC (45) and polyethylene bottles (46). Studies of surface fluorination of polymer films have been reported (47). The fluorination of polyethylene powder was described (48) as a fiery intense reaction, which was finally controlled by dilution with an inert gas at reduced pressures. Direct fluorination of polymers was achieved in 1970 (8,49). More recently, surface fluorinations of poly(vinyl fluoride), polycarbonates, polystyrene, and poly(methyl methacrylate), and the surface fluorination of containers have been described (50,51). Partially fluorinated poly(ethylene terephthalate) and polyamides such as nylon have excellent soil release properties as well as high wettabiUty (52,53). The most advanced direct fluorination technology in the area of single-compound synthesis and synthesis of high performance fluids is currently practiced by 3M Co. of St. Paul, Minnesota, and by Exfluor Research Corp. of Austin, Texas. [Pg.278]

New PHB materials are composed of Zn-tetraben2oporphyrin—aromatic cyanide—poly (methyl methacrylate) (180) or of tetraphenylporphyrin derivatives dispersed in polymer matrices such as PMMA and polyethylene (181). A survey of such materials has been given (181). [Pg.156]

MAA and EAA are stable Hquids, and are shipped in nonretumable 208-L (55-gal) polyethylene-lined dmms. For bulk shipments, insulated stainless steel tank containers and tmcks provide secure protection. 2-Acetoacetoxyethyl methacrylate is a Hquid stabili2ed with radical inhibitors such as BHT [128-37-0] and has a shelf life of approximately three months. Shipment is in 60- or 208-L polyethylene-lined dmms. Acetoacetaryhdes are nicely crystalline, stable soHds and are shipped in 208-L dmms with polyethylene liners. [Pg.481]

A review covers the preparation and properties of both MABS and MBS polymers (75). Literature is available on the grafting of methacrylates onto a wide variety of other substrates (76,77). Typical examples include the grafting of methyl methacrylate onto mbbers by a variety of methods chemical (78,79), photochemical (80), radiation (80,81), and mastication (82). Methyl methacrylate has been grafted onto such substrates as cellulose (83), poly(vinyl alcohol) (84), polyester fibers (85), polyethylene (86), poly(styrene) (87), poly(vinyl chloride) (88), and other alkyl methacrylates (89). [Pg.269]

Organic peroxides are used in the polymer industry as thermal sources of free radicals. They are used primarily to initiate the polymerisation and copolymerisation of vinyl and diene monomers, eg, ethylene, vinyl chloride, styrene, acryUc acid and esters, methacrylic acid and esters, vinyl acetate, acrylonitrile, and butadiene (see Initiators). They ate also used to cute or cross-link resins, eg, unsaturated polyester—styrene blends, thermoplastics such as polyethylene, elastomers such as ethylene—propylene copolymers and terpolymers and ethylene—vinyl acetate copolymer, and mbbets such as siUcone mbbet and styrene-butadiene mbbet. [Pg.135]

Polymer Blends. The miscibility of poly(ethylene oxide) with a number of other polymers has been studied, eg, with poly (methyl methacrylate) (18—23), poly(vinyl acetate) (24—27), polyvinylpyrroHdinone (28), nylon (29), poly(vinyl alcohol) (30), phenoxy resins (31), cellulose (32), cellulose ethers (33), poly(vinyl chloride) (34), poly(lactic acid) (35), poly(hydroxybutyrate) (36), poly(acryhc acid) (37), polypropylene (38), and polyethylene (39). [Pg.342]

The materials used in a total joint replacement ate designed to enable the joint to function normally. The artificial components ate generally composed of a metal piece that fits closely into bone tissue. The metals ate varied and include stainless steel or alloys of cobalt, chrome, and titanium. The plastic material used in implants is a polyethylene that is extremely durable and wear-resistant. Also, a bone cement, a methacrylate, is often used to anchor the artificial joint materials into the bone. Cementiess joint replacements have mote tecentiy been developed. In these replacements, the prosthesis and the bone ate made to fit together without the need for bone cement. The implants ate press-fit into the bone. [Pg.187]

Fig. 15. Oxygen permeability versus 1/specific free volume at 25 °C (30). 1. Polybutadiene 2. polyethylene (density 0.922) 3. polycarbonate 4. polystyrene 5. styrene-acrylonitrile 6. poly(ethylene terephthalate) 7. acrylonitrile barrier polymer 8. poly(methyl methacrylate) 9. poly(vinyl chloride) 10. acrylonitrile barrier polymer 11. vinyUdene chloride copolymer 12. polymethacrylonitrile and 13. polyacrylonitrile. See Table 1 for unit conversions. Fig. 15. Oxygen permeability versus 1/specific free volume at 25 °C (30). 1. Polybutadiene 2. polyethylene (density 0.922) 3. polycarbonate 4. polystyrene 5. styrene-acrylonitrile 6. poly(ethylene terephthalate) 7. acrylonitrile barrier polymer 8. poly(methyl methacrylate) 9. poly(vinyl chloride) 10. acrylonitrile barrier polymer 11. vinyUdene chloride copolymer 12. polymethacrylonitrile and 13. polyacrylonitrile. See Table 1 for unit conversions.
In these cases the monomer is converted into polymer, and no side products are formed. This approach is used with the major thermoplastics materials (Figure 2.2) such as polyethylene (a polymer of ethylene), polystyrene (a polymer of styrene) and poly(methyl methacrylate) (a polymer of methyl methacrylate). [Pg.20]

The melt viscosity of a polymer at a given temperature is a measure of the rate at which chains can move relative to each other. This will be controlled by the ease of rotation about the backbone bonds, i.e. the chain flexibility, and on the degree of entanglement. Because of their low chain flexibility, polymers such as polytetrafluoroethylene, the aromatic polyimides, the aromatic polycarbonates and to a less extent poly(vinyl chloride) and poly(methyl methacrylate) are highly viscous in their melting range as compared with polyethylene and polystyrene. [Pg.73]

Polymers containing oxazoline groups are obtained either by grafting the 2-oxazoline onto a suitable existing polymer such as polyethylene or polyphenylene oxide or alternatively by copolymerising a monomer such as styrene or methyl methacrylate with a small quantity (<1%) of a 2-oxazoline. The grafting reaction may be carried out very rapidly (3-5 min) in an extruder at temperatures of about 200°C in the presence of a peroxide such as di-t-butyl peroxide Figure 7.13). [Pg.155]

Melt viscosity is a function of 7 - 7g, and a major cause of the difference between the viscosity of poly(methyl methacrylate) at its processing temperature (where 7 - 7g = 100°C approx.) and the viscosity of polyethylene at its processing temperature (where 7 - 7g = 200°C approx.) is explicable by the above relationship. [Pg.167]

There are a number of polymers which in fact cannot be melt processed because of their high molecular weights. These include PTFE, very high molecular weight polyethylene and most grades of cast poly(methyl methacrylate). In such cases shaping in the rubbery phase is usually the best alternative. [Pg.179]

Flow properties of polyethylene have been widely studied. Because of the wide range of average molecular weights amongst commercial polymers the viscosities vary widely. The most commonly used materials, however, have viscosities lower than for unplasticised PVC and polyfmethyl methacrylate) and higher than for the nylons. [Pg.222]

At one time butadiene-acrylonitrile copolymers (nitrile rubbers) were the most important impact modifiers. Today they have been largely replaced by acrylonitrile-butadiene-styrene (ABS) graft terpolymers, methacrylate-buta-diene-styrene (MBS) terpolymers, chlorinated polyethylene, EVA-PVC graft polymers and some poly acrylates. [Pg.341]

In addition to acting as impact modifiers a number of polymeric additives may be considered as processing aids. These have similar chemical constitutions to the impact modifiers and include ABS, MBS, chlorinated polyethylene, acrylate-methacrylate copolymers and EVA-PVC grafts. Such materials are more compatible with the PVC and are primarily included to ensure more uniform flow and hence improve surface finish. They may also increase gelation rates. In the case of the compatible MBS polymers they have the special function already mentioned of balancing the refractive indices of the continuous and disperse phases of impact-modified compound. [Pg.342]

Poly(methyl methacrylate) is a good electrical insulator for low-frequency work, but is inferior to such polymers as polyethylene and polystyrene, particularly at high frequencies. The influence of temperature and frequency on the dielectric constant is shown in Figure 15.9. [Pg.408]


See other pages where Polyethylene/methacrylic is mentioned: [Pg.671]    [Pg.744]    [Pg.66]    [Pg.283]    [Pg.591]    [Pg.671]    [Pg.744]    [Pg.66]    [Pg.283]    [Pg.591]    [Pg.271]    [Pg.148]    [Pg.410]    [Pg.420]    [Pg.424]    [Pg.428]    [Pg.396]    [Pg.422]    [Pg.139]    [Pg.62]    [Pg.73]    [Pg.74]    [Pg.134]    [Pg.409]    [Pg.410]    [Pg.711]    [Pg.715]   


SEARCH



© 2024 chempedia.info