Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyethylene-£>-poly

Poly(polyethylene glycol-co-naphthalate), (I), was previously prepared by Hebrink et al. (2) and used in multilayered polymer films as a reflective polarizer or mirror. [Pg.385]

Cisplatin Poly(laotlo-oo-glyoollo aold-monomethoxy-poly (polyethylene glyool) Antineoplastio... [Pg.422]

A polymer is a macromolecule that is constructed by chemically linking together a sequent of molecular fragments. In simple synthetic polymers such as polyethylene or polystyrer all of the molecular fragments comprise the same basic unit (or monomer). Other poly me contain mixtures of monomers. Proteins, for example, are polypeptide chains in which eac unit is one of the twenty amino acids. Cross-linking between different chains gives rise to j-further variations in the constitution and structure of a polymer. All of these features me affect the overall properties of the molecule, sometimes in a dramatic way. Moreover, or... [Pg.439]

ETHYLENE We discussed ethylene production in an earlier boxed essay (Section 5 1) where it was pointed out that the output of the U S petrochemi cal industry exceeds 5 x 10 ° Ib/year Approximately 90% of this material is used for the preparation of four compounds (polyethylene ethylene oxide vinyl chloride and styrene) with polymerization to poly ethylene accounting for half the total Both vinyl chloride and styrene are polymerized to give poly(vinyl chloride) and polystyrene respectively (see Table 6 5) Ethylene oxide is a starting material for the preparation of ethylene glycol for use as an an tifreeze in automobile radiators and in the produc tion of polyester fibers (see the boxed essay Condensation Polymers Polyamides and Polyesters in Chapter 20)... [Pg.269]

Polyethylene films as packaging ma terial plastic squeeze bottles are molded from high density poly ethylene... [Pg.270]

Low-density polyethylene (LDPE) Poly(phenyl sulfone)... [Pg.1011]

Those polymers which are the condensation product of two different monomers are named by applying the preceding rules to the repeat unit. For example, the polyester formed by the condensation of ethylene glycol and terephthalic acid is called poly(oxyethylene oxyterphthaloyl) according to the lUPAC system, as well as poly (ethylene terephthalate) or polyethylene terephthalate. [Pg.22]

Poly(l, 4-cis-isoprene). Although AHf j is slightly higher than that of polyethylene, it is still completely reasonable for a hydrocarbon. The... [Pg.208]

Poly(ethylene oxide). Although AH j is more than double that of polyethylene, the effect is offset by an even greater increase for AS j. The latter may be due to increased chain flexibility in the liquid caused by the regular insertion of ether oxygens along the chain backbone. [Pg.209]

The windows of the absorption cell are made from polymer material such as polyethylene, poly(ethylene terephthalate Terylene ) or polystyrene. [Pg.61]

Materials that typify thermoresponsive behavior are polyethylene—poly (ethylene glycol) copolymers that are used to functionalize the surfaces of polyethylene films (smart surfaces) (20). When the copolymer is immersed in water, the poly(ethylene glycol) functionaUties at the surfaces have solvation behavior similar to poly(ethylene glycol) itself. The abiUty to design a smart surface in these cases is based on the observed behavior of inverse temperature-dependent solubiUty of poly(alkene oxide)s in water. The behavior is used to produce surface-modified polymers that reversibly change their hydrophilicity and solvation with changes in temperatures. Similar behaviors have been observed as a function of changes in pH (21—24). [Pg.250]

AUoys of ceUulose with up to 50% of synthetic polymers (polyethylene, poly(vinyl chloride), polystyrene, polytetrafluoroethylene) have also been made, but have never found commercial appUcations. In fact, any material that can survive the chemistry of the viscose process and can be obtained in particle sizes of less than 5 p.m can be aUoyed with viscose. [Pg.350]

Polystyrene. Polystyrene (PS) film and sheet has the third largest production volume, behind only the polyethylenes and poly(vinyl chloride). [Pg.378]

The film tube is collapsed within a V-shaped frame of rollers and is nipped at the end of the frame to trap the air within the bubble. The nip roUs also draw the film away from the die. The draw rate is controlled to balance the physical properties with the transverse properties achieved by the blow draw ratio. The tube may be wound as such or may be sHt and wound as a single-film layer onto one or more roUs. The tube may also be direcdy processed into bags. The blown film method is used principally to produce polyethylene film. It has occasionally been used for polypropylene, poly(ethylene terephthalate), vinyls, nylon, and other polymers. [Pg.380]

BiaxiaHy oriented films have excellent tensile strength properties and good tear and impact properties. They are especially well regarded for their brilliance and clarity. Essentially all poly(ethylene terephthalate) film is biaxiaHy oriented, and more than 80% of polypropylene film is biaxiaHy oriented. Polystyrene film is oriented, and a lesser amount of polyethylene, polyamide, poly(vinyl chloride), and other polymers are so processed. Some of the specialty films, like polyimides (qv), are also oriented. [Pg.381]

Table 6 shows the sales estimates for principal film and sheet products for the year 1990 (14). Low density polyethylene films dominate the market in volume, followed by polystyrene and the vinyls. High density polyethylene, poly(ethylene terephthalate), and polypropylene are close in market share and complete the primary products. A number of specialty resins are used to produce 25,000—100,000 t of film or sheet, and then there are a large number of high priced, high performance materials that serve niche markets. The original clear film product, ceUophane, has faUen to about 25,000 t in the United States, with only one domestic producer. Table 7 Hsts some of the principal film and sheet material manufacturers in the United States. Table 6 shows the sales estimates for principal film and sheet products for the year 1990 (14). Low density polyethylene films dominate the market in volume, followed by polystyrene and the vinyls. High density polyethylene, poly(ethylene terephthalate), and polypropylene are close in market share and complete the primary products. A number of specialty resins are used to produce 25,000—100,000 t of film or sheet, and then there are a large number of high priced, high performance materials that serve niche markets. The original clear film product, ceUophane, has faUen to about 25,000 t in the United States, with only one domestic producer. Table 7 Hsts some of the principal film and sheet material manufacturers in the United States.
In 1954 the surface fluorination of polyethylene sheets by using a soHd CO2 cooled heat sink was patented (44). Later patents covered the fluorination of PVC (45) and polyethylene bottles (46). Studies of surface fluorination of polymer films have been reported (47). The fluorination of polyethylene powder was described (48) as a fiery intense reaction, which was finally controlled by dilution with an inert gas at reduced pressures. Direct fluorination of polymers was achieved in 1970 (8,49). More recently, surface fluorinations of poly(vinyl fluoride), polycarbonates, polystyrene, and poly(methyl methacrylate), and the surface fluorination of containers have been described (50,51). Partially fluorinated poly(ethylene terephthalate) and polyamides such as nylon have excellent soil release properties as well as high wettabiUty (52,53). The most advanced direct fluorination technology in the area of single-compound synthesis and synthesis of high performance fluids is currently practiced by 3M Co. of St. Paul, Minnesota, and by Exfluor Research Corp. of Austin, Texas. [Pg.278]

The limiting oxygen index of Tefzel as measured by the candle test (ASTM D2863) is 30%. Tefzel is rated 94 V-0 by Underwriters Laboratories, Inc., in their burning test classification for polymeric materials. As a fuel, it has a comparatively low rating. Its heat of combustion is 13.7 MJ/kg (32,500 kcal/kg) compared to 14.9 MJ /kg (35,000 kcal/kg) for poly(vinyHdene fluoride) and 46.5 MJ /kg (110,000 kcal/kg) for polyethylene. [Pg.370]

Physical Stabilization Process. Cellulai polystyrene [9003-53-6] the outstanding example poly(vinyl chloride) [9002-86-2] copolymers of styrene and acrylonitrile (SAN copolymers [9003-54-7]) and polyethylene [9002-88-4] can be manufactured by this process. [Pg.405]

Sintering has been used to produce a porous polytetrafluoroethylene (16). Cellulose sponges are the most familiar cellular polymers produced by the leaching process (123). Sodium sulfate crystals are dispersed in the viscose symp and subsequently leached out. Polyethylene (124) or poly(vinyl chloride) can also be produced in cellular form by the leaching process. The artificial leather-tike materials used for shoe uppers are rendered porous by extraction of salts (125) or by designing the polymers in such a way that they precipitate as a gel with many holes (126). [Pg.408]

Structural Components. In most appHcations stmctural foam parts are used as direct replacements for wood, metals, or soHd plastics and find wide acceptance in appHances, automobUes, furniture, materials-handling equipment, and in constmction. Use in the huil ding and constmction industry account for more than one-half of the total volume of stmctural foam appHcations. High impact polystyrene is the most widely used stmctural foam, foUowed by polypropylene, high density polyethylene, and poly(vinyl chloride). The constmction industry offers the greatest growth potential for ceUular plastics. [Pg.416]

The combination of stmctural strength and flotation has stimulated the design of pleasure boats using a foamed-in-place polyurethane between thin skins of high tensUe strength (231). Other ceUular polymers that have been used in considerable quantities for buoyancy appHcations are those produced from polyethylene, poly(vinyl chloride), and certain types of mbber. The susceptibUity of polystyrene foams to attack by certain petroleum products that are likely to come in contact with boats led to the development of foams from copolymers of styrene and acrylonitrUe which are resistant to these materials... [Pg.416]

Heat stabilizers protect polymers from the chemical degrading effects of heat or uv irradiation. These additives include a wide variety of chemical substances, ranging from purely organic chemicals to metallic soaps to complex organometaUic compounds. By far the most common polymer requiring the use of heat stabilizers is poly(vinyl chloride) (PVC). However, copolymers of PVC, chlorinated poly(vinyl chloride) (CPVC), poly(vinyhdene chloride) (PVDC), and chlorinated polyethylene (CPE), also benefit from this technology. Without the use of heat stabilizers, PVC could not be the widely used polymer that it is, with worldwide production of nearly 16 million metric tons in 1991 alone (see Vinyl polymers). [Pg.544]

New PHB materials are composed of Zn-tetraben2oporphyrin—aromatic cyanide—poly (methyl methacrylate) (180) or of tetraphenylporphyrin derivatives dispersed in polymer matrices such as PMMA and polyethylene (181). A survey of such materials has been given (181). [Pg.156]

Cables are available in a variety of constmctions and materials, in order to meet the requirements of industry specifications and the physical environment. For indoor usage, such as for Local Area Networks (LAN), the codes require that the cables should pass very strict fire and smoke release specifications. In these cases, highly dame retardant and low smoke materials are used, based on halogenated polymers such as duorinated ethylene—propylene polymers (like PTFE or FEP) or poly(vinyl chloride) (PVC). Eor outdoor usage, where fire retardancy is not an issue, polyethylene can be used at a lower cost. [Pg.323]

A variety of cellular plastics exists for use as thermal iasulation as basic materials and products, or as thermal iasulation systems ia combination with other materials (see Foamed plastics). Polystyrenes, polyisocyanurates (which include polyurethanes), and phenoHcs are most commonly available for general use, however, there is increasing use of other types including polyethylenes, polyimides, melamines, and poly(vinyl chlorides) for specific appHcations. [Pg.331]

About 35% of total U.S. LPG consumption is as chemical feedstock for petrochemicals and polymer iatermediates. The manufacture of polyethylene, polypropylene, and poly(vinyl chloride) requires huge volumes of ethylene (qv) and propylene which, ia the United States, are produced by thermal cracking/dehydrogenation of propane, butane, and ethane (see Olefin polymers Vinyl polymers). [Pg.187]


See other pages where Polyethylene-£>-poly is mentioned: [Pg.217]    [Pg.51]    [Pg.290]    [Pg.36]    [Pg.456]    [Pg.217]    [Pg.51]    [Pg.290]    [Pg.36]    [Pg.456]    [Pg.271]    [Pg.402]    [Pg.229]    [Pg.231]    [Pg.194]    [Pg.264]    [Pg.284]    [Pg.373]    [Pg.377]    [Pg.417]    [Pg.73]    [Pg.154]    [Pg.287]    [Pg.476]    [Pg.192]    [Pg.299]    [Pg.329]    [Pg.72]   


SEARCH



Biodegradable polyethylene glycol)poly copolymer

High-density polyethylene and poly(vinyl

Poly , molecular Polyethylene, chain flexibility compared

Poly Polyethylene, linear high-density

Poly block copolymers polyethylene

Poly chlorinated polyethylene

Poly composites with polyethylene

Poly polyethylene blends

Poly polyethylene glycol diblock copolymer

Poly polyethylene particles

Polyethylene Glycol-Poly(D,L-Lactide)

Polyethylene glycol) Poly

Polyethylene glycol) Poly(hydroxyethyl

Polyethylene glycol)-poly copolymer

Polyethylene glycol)poly composition

Polyethylene glycol-coated poly

Polyethylene high-density poly

Polyethylene oxide)-poly

Polyethylene oxide)-poly copolymer

Polyethylene oxide)-poly(butylene

Polyethylene-graft-poly

Polyethylene-poly(ethylene

Polyethylene-£>-poly diblock copolymers

Triblock copolymer: polyethylene oxide)-polystyrene-poly

© 2024 chempedia.info