Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly block copolymers polyethylene

Mean-field lattice theory proved to be capable of predicting the phase behaviour of the ternary block copolymer polyethylene-b-poly(propylene oxide)-b-poly(ethylene oxide), PE-b-PPO-b-PEO in the selective solvent water [164], The ethylene block is known to be highly hydrophobic, and its hydrophobicity does not depend strongly on temperature. The difference in hydrophobicity between PPO and PEO, on the other hand, is moderate... [Pg.197]

Citrate-capped Au NPs have been coated with a layer composed of the double hydrophilic block copolymer polyethylene oxide)-block-poly(2-(dimethylamino)eth-yl methacrylate)-SH (PEO-b-PDMA-SH) leading to core-shell, almost spherical, Au NPs of about 18 nm. The shell cross-linking of these hybrid Au NPs gives rise to high colloidal stability [122]. [Pg.157]

Pluronics tri-block copolymer polyethylene oxide-polypropylene oxide-poly-ethylene oxide (PEO-PPO-PEO)... [Pg.483]

Most of Chapter 4 has emphasized block copolymers based on, for example, combinations of polybutadiene with polystyrene, where both components are amorphous. The multiblock copolymers were treated in Chapter 5. The system poly(ethylene oxide)-polystyrene, containing one amorphous and one crystalline component, and the crystalline-crystalline block copolymer polyethylene-polypropylene were treated in this chapter. These three chapters illustrate some of the differences that can be brought about by considering the different types of polymers that can be attached to form block copolymers. [Pg.208]

Multiblock Copolymers Polyurethane/elastomer block copolymers Polyester/elastomer block copolymers Polyamide/elastomer block copolymers Polyethylene/poly(a-olefin) block copolymers... [Pg.2364]

Similarly, the random introduction by copolymerization of stericaHy incompatible repeating unit B into chains of crystalline A reduces the crystalline melting point and degree of crystallinity. If is reduced to T, crystals cannot form. Isotactic polypropylene and linear polyethylene homopolymers are each highly crystalline plastics. However, a random 65% ethylene—35% propylene copolymer of the two, poly(ethylene- (9-prop5lene) is a completely amorphous ethylene—propylene mbber (EPR). On the other hand, block copolymers of the two, poly(ethylene- -prop5iene) of the same overall composition, are highly crystalline. X-ray studies of these materials reveal both the polyethylene lattice and the isotactic polypropylene lattice, as the different blocks crystallize in thek own lattices. [Pg.434]

RAFT polymerization has been used to prepare poly(ethylene oxide)-/ /wA-PS from commercially available hydroxy end-functional polyethylene oxide).4 5 449 Other block copolymers that have been prepared using similar strategies include poly(ethylene-co-butylene)-6/oci-poly(S-eo-MAH), jl poly(ethylene oxide)-block-poly(MMA),440 polyethylene oxide)-Moe -poly(N-vinyl formamide),651 poly(ethylene oxide)-Wot A-poly(NlPAM),651 polyfethylene ox de)-b ock-polyfl,1,2,2-tetrahydroperfluorodecyl acrylate),653 poly(lactic acid)-block-poly(MMA)440 and poly( actic acid)-6focA-poly(NIPAM),4 8-<>54... [Pg.546]

In a similar manner polyisoprene-polyethylene oxide block copolymers can prepared301. It is surprising that the poly(methyl methacrylate) anion can be successfully used for the polymerization of ethylene oxide without chain transfer302. Graft copolymers are also prepared by successive addition of ethylene oxide to the poly-... [Pg.25]

Hot melt adhesives based on poly(3HB-co-3HV) have also been described [119]. Hot melts are commonly used in bookbinding, bag ending and case and carton sealing and are mostly based on synthetic materials such as polyethylene, polypropylene ethylene-vinyl acetate and styrene block copolymers [119]. Hot melts based on PHAs alleviate the dependence on petroleum based materials and allow the development of biodegradable alternatives based on natural raw materials. [Pg.273]

Poly(ethylene oxide) (PEO), 10 665, 673-674 13 540, 542-543, 731. See also Ethylene oxide polymers association reactions of, 10 682 behavior in solution, 10 685 commercial block copolymers, 7 648t crystallinity of, 10 690 as a flocculating agent, 11 630-631 low molecular weight, 14 259 oxidation of, 10 682 in paper manufacture, IS 117 preparation of, 20 462 Polyethylene oxide chains, in cationic surfactants, 24 147... [Pg.731]

A diblock copolymer consisting of a block of polyethylene grafted with poly(vinyl chloride) and a block of polystyrene, the structure of which is ... [Pg.348]

If a mechanical degradation of a solution of two polymers is carried out by high speed stirring, the formation of a block copolymer is not probable as the scission of polymer molecules at low concentration is not caused mainly by intermolecular interaction, such as by collision of molecules and through entanglements, but by displacements due to hydrodynamic forces in velocity gradients. Nakamo and Minoura (98) did obtain reaction by stirring a benzene solution of polyethylene oxide and poly(methyl methacrylate). [Pg.62]

Ceresa synthetized also block copolymers of poly(methyl methacrylate) with acrylonitrile and styrene and of polyethylene with methyl methacrylate, styrene using this method (104). [Pg.65]

Au NPs have been synthesized in polymeric micelles composed of amphiphilic block copolymers. Poly(styrene)-block-poly(2-vinylpyridine) in toluene has been used as nanocompartments loaded with a defined amount of HAuCl4 and reduced with anhydrous hydrazine. The metal ions can be reduced in such a way that exactly one Au NP is formed in each micelle, where each particle is of equal size between 1 and 15 nm [113]. In another example, the addition of HAuCfi to the triblock copolymer (PS-b-P2VP-b-PEO) (polystyrene-block-poly-2-vinyl pyridine-block-polyethylene oxide) permits the synthesis of Au N Ps using two different routes, such as the reduction of AuC14 by electron irradiation during observation or by addition of an excess of aqueous NaBH4 solution [114]. [Pg.155]

Polyethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) (Pluronic) block copolymer is a very efficient reducing agent and nanoparticle stabilizer. Au NPs of about 10 nm can be stabilized with PEO-PPO-PEO block copolymer solutions in water and at room temperature and using HAuC14 as precursor. The formation of gold nanoparticles is controlled by the overall molecular weight and relative block length of the block copolymer [118]. [Pg.156]

Alexandridis P, Hatton TA. Polyethylene oxide)-poly(propylene oxide)- poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces thermodynamics, structure, dynamics, and modeling (review). Colloid Surf A Physicochem Eng Aspects 1995 96 1 16. [Pg.290]

HMX HMX HMX HMX HMX HMX HMX HMX HMX HMX HMX HMX HNS NTO NTO/HMX NTO/HMX NTO/HMX PETN PETN PETN PETN PETN PETN PETN PETN PETN PETN RDX RDX RDX RDX RDX RDX RDX RDX RDX RDX RDX RDX RDX TATB/HMX Cariflex (thermoplastic elastomer) Hydroxy-terminated polybutadiene (polyurethane) Hydroxy-terminated polyester Kraton (block copolymer of styrene and ethylene-butylene) Nylon (polyamide) Polyester resin-styrene Polyethylene Polyurethane Poly(vinyl) alcohol Poly(vinyl) butyral resin Teflon (polytetrafluoroethylene) Viton (fluoroelastomer) Teflon (polytetrafluoroethylene) Cariflex (block copolymer of butadiene-styrene) Cariflex (block copolymer of butadiene-styrene) Estane (polyester polyurethane copolymer) Hytemp (thermoplastic elastomer) Butyl rubber with acetyl tributylcitrate Epoxy resin-diethylenetriamine Kraton (block copolymer of styrene and ethylene-butylene) Latex with bis-(2-ethylhexyl adipate) Nylon (polyamide) Polyester and styrene copolymer Poly(ethyl acrylate) with dibutyl phthalate Silicone rubber Viton (fluoroelastomer) Teflon (polytetrafluoroethylene) Epoxy ether Exon (polychlorotrifluoroethylene/vinylidine chloride) Hydroxy-terminated polybutadiene (polyurethane) Kel-F (polychlorotrifluoroethylene) Nylon (polyamide) Nylon and aluminium Nitro-fluoroalkyl epoxides Polyacrylate and paraffin Polyamide resin Polyisobutylene/Teflon (polytetrafluoroethylene) Polyester Polystyrene Teflon (polytetrafluoroethylene) Kraton (block copolymer of styrene and ethylene-butylene)... [Pg.12]


See other pages where Poly block copolymers polyethylene is mentioned: [Pg.54]    [Pg.5]    [Pg.73]    [Pg.148]    [Pg.259]    [Pg.451]    [Pg.14]    [Pg.19]    [Pg.387]    [Pg.26]    [Pg.46]    [Pg.148]    [Pg.24]    [Pg.62]    [Pg.215]    [Pg.96]    [Pg.447]    [Pg.22]    [Pg.664]    [Pg.230]    [Pg.398]    [Pg.23]    [Pg.644]    [Pg.74]    [Pg.67]    [Pg.44]    [Pg.414]    [Pg.531]    [Pg.551]    [Pg.148]    [Pg.259]    [Pg.304]   


SEARCH



Poly -polyethylene

Poly block

Poly block copolymers

Poly blocking

Polyethylene block

Polyethylene block copolymers

Polyethylene copolymers

© 2024 chempedia.info