Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly high-density

Polyethylene films as packaging ma terial plastic squeeze bottles are molded from high density poly ethylene... [Pg.270]

Table 6 shows the sales estimates for principal film and sheet products for the year 1990 (14). Low density polyethylene films dominate the market in volume, followed by polystyrene and the vinyls. High density polyethylene, poly(ethylene terephthalate), and polypropylene are close in market share and complete the primary products. A number of specialty resins are used to produce 25,000—100,000 t of film or sheet, and then there are a large number of high priced, high performance materials that serve niche markets. The original clear film product, ceUophane, has faUen to about 25,000 t in the United States, with only one domestic producer. Table 7 Hsts some of the principal film and sheet material manufacturers in the United States. Table 6 shows the sales estimates for principal film and sheet products for the year 1990 (14). Low density polyethylene films dominate the market in volume, followed by polystyrene and the vinyls. High density polyethylene, poly(ethylene terephthalate), and polypropylene are close in market share and complete the primary products. A number of specialty resins are used to produce 25,000—100,000 t of film or sheet, and then there are a large number of high priced, high performance materials that serve niche markets. The original clear film product, ceUophane, has faUen to about 25,000 t in the United States, with only one domestic producer. Table 7 Hsts some of the principal film and sheet material manufacturers in the United States.
Structural Components. In most appHcations stmctural foam parts are used as direct replacements for wood, metals, or soHd plastics and find wide acceptance in appHances, automobUes, furniture, materials-handling equipment, and in constmction. Use in the huil ding and constmction industry account for more than one-half of the total volume of stmctural foam appHcations. High impact polystyrene is the most widely used stmctural foam, foUowed by polypropylene, high density polyethylene, and poly(vinyl chloride). The constmction industry offers the greatest growth potential for ceUular plastics. [Pg.416]

The even-numbered carbon alpha olefins (a-olefins) from through C q are especially useful. For example, the C, C, and Cg olefins impart tear resistance and other desirable properties to linear low and high density polyethylene the C, Cg, and C q compounds offer special properties to plasticizers used in flexible poly(vinyl chloride). Linear C q olefins and others provide premium value synthetic lubricants linear 145 olefins are used in... [Pg.435]

In the early 1950s, Ziegler observed that certain heterogeneous catalysts based on transition metals polymerized ethylene to a linear, high density material at modest pressures and temperatures. Natta showed that these catalysts also could produce highly stereospecific poly-a-olefins, notably isotactic polypropylene, and polydienes. They shared the 1963 Nobel Prize in chemistry for their work. [Pg.437]

Nor is it tme that poly(ethylene terephthalate) (PET) and high density polyethylene (HDPE) packaging are hsted as 1 and 2 in the Society of the Plastics Industry (SPI) recycling coding system because they are the most recyclable. The numbers assigned to each plastic in the SPI coding system are purely arbitrary and do not redect the material s recyclabihty. [Pg.509]

EiaaHy, a new aluminum fire-resistant paneling consists of a composite design that iacludes a soHd thermoplastic compound core covered with a high density polyethylene adhesive film and an aluminum skin. The product is easily formable. It has sound deadening abiHties, and an optional poly(vinyHdene fluoride) resia coatiag provides damage resistance. [Pg.335]

Tension Above materials plus High-density polyethylene Polypropylene Acetal polymers Aliphatic polyamides (nylons) PPO Poly(ethylene terephthalate) Polysulphones... [Pg.191]

In 2002, the world production of polymers (not including synthetic libers and rubbers) was ca. 190 million metric tons. Of these, the combined production of poly(ethylene terephthalate), low- and high-density polyethyelene, polypropylene, poly(vinyl chloride), polystyrene, and polyurethane was 152.3 milhon metric tons [1]. These synthetic, petroleum-based polymers are used, inter alia, as engineering plastics, for packing, in the construction-, car-, truck- and food-industry. They are chemically very stable, and can be processed by injection molding, and by extrusion from the melt in a variety of forms. These attractive features, however, are associated with two main problems ... [Pg.104]

Lastly the Phillips and the Standard Oil (Indiana) Processes both yield high density poly(ethylenes), using relatively low pressures and temperatures. Details of these processes are given in Table 1.1. [Pg.7]

Both thermosets and thermoplastics are used as food-contact materials, though thermoplastics predominate in this appfication. Examples of the former are phenol- and urea-formaldehyde, while probably the best known example of the latter is low-density poly(ethylene). Other linear polymers are used include high-density poly(ethylene), poly(propylene), and PVC, all of which find quite extensive use. Polymers for food packaging may be in the form of films and other flexible items, or in the form of rigid containers, such as clear drinks bottles or opaque cartons for dairy products. [Pg.158]

High density poly(ethylene) Bottles for milk and washing-up liquid ... [Pg.165]

The quantity of these materials is relatively small compared with the amount of waste high-density poly(ethylene) produced each year. Containers made from HDPE are widely used for detergents, oil, and antifreeze, and enormous amounts of material are used in disposable applications aimually. In principle recycled poly(ethylene) could be used for drain pipes, flower pots, dustbins, and plastic crates. The problem remains, however, that economics do not favour recycling of these polymers and in the absence of Government intervention little or nothing can be done to alter commercial attitudes towards recycling. [Pg.166]

Surface force profiles between these polyelectrolyte brush layers have consisted of a long-range electrostatic repulsion and a short-range steric repulsion, as described earlier. Short-range steric repulsion has been analyzed quantitatively to provide the compressibility modulus per unit area (T) of the poly electrolyte brushes as a function of chain density (F) (Fig. 12a). The modulus F decreases linearly with a decrease in the chain density F, and suddenly increases beyond the critical density. The maximum value lies at F = 0.13 chain/nm. When we have decreased the chain density further, the modulus again linearly decreased relative to the chain density, which is natural for chains in the same state. The linear dependence of Y on F in both the low- and the high-density regions indicates that the jump in the compressibility modulus should be correlated with a kind of transition between the two different states. [Pg.13]

Yamamoto, S Tsujii, Y. and Fukuda, T. (2002) Glass transition temperatures of high-density poly(methyl methacrylate) brushes. Macromolecules, 35, 6077-6079. [Pg.69]

Controlling fluid loss loss is particularly important in the case of the expensive high density brine completion fluids. While copolymers and terpolymers of vinyl monomers such as sodium poly(2-acrylamido-2-methylpropanesulfonate-co-N,N-dimethylacrylamide-coacrylic acid) has been used (H)), hydroxyethyl cellulose is the most commonly used fluid loss additive (11). It is difficult to get most polymers to hydrate in these brines (which may contain less than 50% wt. water). The treatment of HEC particle surfaces with aldehydes such as glyoxal can delay hydration until the HEC particles are well dispersed (12). Slurries in low viscosity oils (13) and alcohols have been used to disperse HEC particles prior to their addition to high density brines. This and the use of hot brines has been found to aid HEC dissolution. Wetting agents such as sulfosuccinate diesters have been found to result in increased permeability in cores invaded by high density brines (14). [Pg.11]

Lai E, Riley J, Purvis I, Roses A. A4-Mb high-density single nucleotide poly-morphism-based map around human APOE. Genomics 1998 54 31-38. [Pg.55]

Poly(methyl pentene), unfilled Low-density Medium-density High-density Ultra high-molecular-weight Glass-fiber- reinforced, high-density Ethylene-vinyl acetate copolymer... [Pg.1317]

The polymer molecules, therefore, have the same empirical formula as those of the monomer. The conditions for the reaction depend upon whether low-density or high-density poly(ethene) is required. [Pg.103]

For high-density poly(ethene), a pressure of 2 to 6 atmospheres, a temperature of 60 °C and a catalyst of titanium (IV) chloride and triethyl aluminium are needed. [Pg.103]

PET/HDPE blends, 21 452. See also High density polyethylene (HDPE) Poly(ethylene terephthalate) (PET) Petite yeasts, 26 451 Petitgrain oils, in perfumes, 18 370 PET molding resins, 20 56-57 current prices for, 20 59t properties of, 20 59t uses for, 20 57 PETN, 10 734-735. See also... [Pg.687]

Poly(ethylene-co-propylene), 24 703 Polyethylene fabrics, flashspun high density, 17 466 Polyethylene fibers, 26 761 high performance, 13 382 Polyethylene film, properties of,... [Pg.730]


See other pages where Poly high-density is mentioned: [Pg.229]    [Pg.329]    [Pg.15]    [Pg.148]    [Pg.57]    [Pg.331]    [Pg.331]    [Pg.74]    [Pg.61]    [Pg.116]    [Pg.17]    [Pg.282]    [Pg.114]    [Pg.57]    [Pg.310]    [Pg.96]    [Pg.140]    [Pg.633]    [Pg.709]    [Pg.298]    [Pg.129]    [Pg.5]    [Pg.418]    [Pg.139]    [Pg.25]    [Pg.87]    [Pg.2]    [Pg.730]   
See also in sourсe #XX -- [ Pg.87 ]




SEARCH



High-density polyethylene and poly(vinyl

Poly , high

Poly Polyethylene, linear high-density

Poly densities

Polyethylene high-density poly

© 2024 chempedia.info