Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phenol basicity

Fukai, T. and Nomura, T., New NMR structure determination methods for prenylated phenols, Basic Life Sciences, 66 (Plant Polyphenols 2), 259, 1999. [Pg.119]

Il.l Determination of Total Phenolics Basic Protocol 1 Determination of Total Phenolics by Folin-Ciocalteau El.2.1... [Pg.1229]

We found that the ether and ethyl acetate extracts of chicory roots exhibited the best nematicidal activities. The extracts were separated according to their acidity to give organo-acidic, phenolic, basic and neutral fractions. The phenolic fraction was found... [Pg.179]

Lead Picrate. 2,4,6-Trinitro-lead-phenolate basic... [Pg.311]

Sample Carbox. Lacton. Phenolic Basic Acidic Total... [Pg.250]

The nitro-hydrocarbons are neutral substances but when a nitro-group is introduced into a phenol or amine the acidic properties are greatly increased or the basicity decreased. The presence of a nitro-group also tends to make halogen atoms in the same molecule much more reactive. [Pg.277]

The industrial process for preparing the reagent usually permits a little hydrolysis to occur, and the product may contain a little free calcium hydroxide or basic chloride. It cannot therefore be employed for drying acids or acidic liquids. Calcium chloride combines with alcohols, phenols, amines, amino-acids, amides, ketones, and some aldehydes and esters, and thus cannot be used with these classes of compounds. [Pg.140]

In the strongly basic medium, the reactant is the phenoxide ion high nucleophilic activity at the ortho and para positions is provided through the electromeric shifts indicated. The above scheme indicates theorpara substitution is similar. The intermediate o-hydroxybenzal chloride anion (I) may react either with a hydroxide ion or with water to give the anion of salicyl-aldehyde (II), or with phenoxide ion or with phenol to give the anion of the diphenylacetal of salicylaldehyde (III). Both these anions are stable in basic solution. Upon acidification (III) is hydrolysed to salicylaldehyde and phenol this probably accounts for the recovery of much unreacted phenol from the reaction. [Pg.692]

Note 1. A slight excess of phenol was used. With a stoichiometric amount the solution may be too strongly basic, so that the further isomerization will become too fast. [Pg.90]

Many of the properties of phenols reflect the polarization implied by the resonance description The hydroxyl oxygen is less basic and the hydroxyl proton more acidic in phenols than m alcohols Electrophiles attack the aromatic ring of phenols much faster than they attack benzene indicating that the ring especially at the positions ortho and para to the hydroxyl group is relatively electron rich... [Pg.995]

It IS necessary to keep the acidity of phenols in mind when we discuss prepara tion and reactions Reactions that produce phenols when earned out in basic solution require an acidification step to convert the phenoxide ion to the neutral form of the phenol... [Pg.998]

An alternative approach is to increase the nucleophihcity of the phenol by con verting it to its phenoxide anion m basic solution... [Pg.1005]

Phenols that bear strongly electron withdrawing substituents usually give low yields of carboxylated products their derived phenoxide anions are less basic and the equilibrium constants for their carboxylation are smaller... [Pg.1008]

Useful thermosetting resins are obtained by interaction of furfural with phenol. The reaction occurs under both acidic and basic catalysis. Other large uses of furfural together with phenol are in the manufacture of resin-bonded grinding wheels and coated abrasives (5). [Pg.79]

Phenolic Resins. Phenohc resins (qv) are formed by the reaction of phenol [108-95-2] C H O, and formaldehyde [50-00-0] CH2O. If basic conditions and an excess of formaldehyde are used, the result is a resole phenohc resin, which will cure by itself Hberating water. If an acid catalyst and an excess of phenol are used, the result is a novolac phenohc resin, which is not self-curing. Novolac phenohc resins are typically formulated to contain a curing agent which is most often a material known as hexamethylenetetraamine [100-97-0] C H22N4. Phenohc resin adhesives are found in film or solution... [Pg.233]

PhenoHc resins are prepared by the reaction of phenol or substituted phenol with an aldehyde, especially formaldehyde, in the presence of an acidic or basic catalyst. Their thermosetting character and the exotherm associated with the reaction presented technical barriers to commercialization. In 1900, the first U.S. patent was granted for a phenoHc resin, using the resin in cast form as a substitute for hard mbber (10). [Pg.292]

Reactions with Aldehydes and Ketones. An important use for alkylphenols is ia phenol—formaldehyde resias. These resias are classified as resoles or aovolaks (see Phenolic resins). Resoles are produced whea oae or more moles of formaldehyde react with oae mole of pheaol uader basic catalysis. These resias are thermosets. Novolaks are thermoplastic resias formed whea an excess of phenol reacts with formaldehyde under acidic conditions. The acid protonates formaldehyde to generate the alkylating electrophile (17). [Pg.60]

The versatility of this reaction is extended to a variety of aldehydes. The bisphenol derived from 2,6-di-/ f2 -butylphenol and furfural, (25) where R = furfuryl (13), is also used as an antioxidant. The utility of the 3,5-di-/ f2 -butyl-4-hydroxyben2yl moiety is evident in stabili2ets of all types (14), and its effectiveness has spurred investigations of derivatives of hindered alkylphenols to achieve better stahi1i2ing quaUties. Another example is the Michael addition of 2,6-di-/ f2 -butyl phenol to methyl acrylate. This reaction is carried out under basic conditions and yields methyl... [Pg.61]

Most alkylphenols sold today require refinement. Distillation is by far the most common separation route. Multiple distillation tower separations are used to recover over 80% of the alkylphenol products in North America. Figure 4 shows a basic alkylphenol distillation train. Excess phenol is removed from the unrefined alkylphenol stream in the first tower. The by-products, which are less volatile than phenol but more volatile than the product, are removed in the second tower. The product comes off the third tower overhead while the heavy by-products come out the bottom. [Pg.64]

A large number of hindered phenoHc antioxidants are based on the Michael addition of 2,6-di-/ f2 -butylphenol and methyl acrylate under basic catalysis to yield the hydrocinnamate which is a basic building block used in the production of octadecyl 3-(3,5-di-/ f2 butyl-4-hydroxyphenyl)propionate, [2082-79-3], tetrakis(methylene-3(3,5-di-/ f2 butyl-4-hydroxylphenyl)propionate)methane [6683-19-8], and many others (63,64). These hindered phenolic antioxidants are the most widely used primary stabilizers in the world and are used in polyolefins, synthetic and natural mbber, styrenics, vinyl polymers, and engineering resins. 2,6-Di-/ f2 -butylphenol is converted to a methylene isocyanate which is trimerized to a triazine derivative... [Pg.69]

Polymers. Quinoline and its derivatives may be added to or incorporated in polymers to introduce ion-exchange properties (see Ion exchange). For example, phenol—formaldehyde polymers have been treated with quinoline, quinaldine, or lepidine (81) (see Phenolic resins). Resins with variable basic exchange capacities have been prepared by treating Amherlites with 2-methylquinoline (82). [Pg.393]

Dyes, Dye Intermediates, and Naphthalene. Several thousand different synthetic dyes are known, having a total worldwide consumption of 298 million kg/yr (see Dyes AND dye intermediates). Many dyes contain some form of sulfonate as —SO H, —SO Na, or —SO2NH2. Acid dyes, solvent dyes, basic dyes, disperse dyes, fiber-reactive dyes, and vat dyes can have one or more sulfonic acid groups incorporated into their molecular stmcture. The raw materials used for the manufacture of dyes are mainly aromatic hydrocarbons (67—74) and include ben2ene, toluene, naphthalene, anthracene, pyrene, phenol (qv), pyridine, and carba2ole. Anthraquinone sulfonic acid is an important dye intermediate and is prepared by sulfonation of anthraquinone using sulfur trioxide and sulfuric acid. [Pg.79]

Methyl violet [8004-87-3] Cl Basic Violet 1 (17), is made by the air oxidation of dimethyl aniline in the presence of salt, phenol, and a copper sulfate catalyst. Initially, some of the dimethyl aniline is oxidized to formaldehyde and /V-methyl aniline under those conditions. The formaldehyde then reacts with dimethyl aniline to produce N,N,]S7,1S7-tetramethyldiaminodiphenylmethane, which is oxidized to Michler s hydrol [119-58-4]. The hydrol condenses with... [Pg.272]


See other pages where Phenol basicity is mentioned: [Pg.1353]    [Pg.25]    [Pg.393]    [Pg.714]    [Pg.56]    [Pg.1353]    [Pg.25]    [Pg.393]    [Pg.714]    [Pg.56]    [Pg.118]    [Pg.304]    [Pg.1071]    [Pg.1092]    [Pg.303]    [Pg.128]    [Pg.14]    [Pg.270]    [Pg.43]    [Pg.487]    [Pg.221]    [Pg.284]    [Pg.54]    [Pg.62]    [Pg.135]    [Pg.253]    [Pg.31]    [Pg.221]    [Pg.199]    [Pg.202]    [Pg.339]   
See also in sourсe #XX -- [ Pg.203 ]

See also in sourсe #XX -- [ Pg.203 ]




SEARCH



Basicity of phenols

Lewis basic phenol

Phenol-formaldehyde basic conditions

The Basicity of Alcohols and Phenols

© 2024 chempedia.info