Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Basicity of phenol

Despite this voluminous literature on hydrogen bonding, there have been very few discussions on the hydrogen-bond basicity of phenols. The ability of phenols to act as hydrogen-bond acceptors is considered in Section II. [Pg.530]

Phenols are not only acidic but also weakly basic. They (and their ethers) can be protonated by strong acids to give the corresponding phenyloxonium ions. Thus, as with the alkanols, the hydroxy group imparts amphoteric character (Section 8-3). However, the basicity of phenol is even less than that of the alkanols, because the lone electron pairs on the oxygen are delocalized into the benzene ring (Sections 16-1 and 16-3). The p/fj values for phenyloxonium ions are, therefore, lower than those of alkyloxonium ions. [Pg.1001]

Note 1. A slight excess of phenol was used. With a stoichiometric amount the solution may be too strongly basic, so that the further isomerization will become too fast. [Pg.90]

Many of the properties of phenols reflect the polarization implied by the resonance description The hydroxyl oxygen is less basic and the hydroxyl proton more acidic in phenols than m alcohols Electrophiles attack the aromatic ring of phenols much faster than they attack benzene indicating that the ring especially at the positions ortho and para to the hydroxyl group is relatively electron rich... [Pg.995]

It IS necessary to keep the acidity of phenols in mind when we discuss prepara tion and reactions Reactions that produce phenols when earned out in basic solution require an acidification step to convert the phenoxide ion to the neutral form of the phenol... [Pg.998]

Phenolic Resins. Phenohc resins (qv) are formed by the reaction of phenol [108-95-2] C H O, and formaldehyde [50-00-0] CH2O. If basic conditions and an excess of formaldehyde are used, the result is a resole phenohc resin, which will cure by itself Hberating water. If an acid catalyst and an excess of phenol are used, the result is a novolac phenohc resin, which is not self-curing. Novolac phenohc resins are typically formulated to contain a curing agent which is most often a material known as hexamethylenetetraamine [100-97-0] C H22N4. Phenohc resin adhesives are found in film or solution... [Pg.233]

PhenoHc resins are prepared by the reaction of phenol or substituted phenol with an aldehyde, especially formaldehyde, in the presence of an acidic or basic catalyst. Their thermosetting character and the exotherm associated with the reaction presented technical barriers to commercialization. In 1900, the first U.S. patent was granted for a phenoHc resin, using the resin in cast form as a substitute for hard mbber (10). [Pg.292]

Reactions with Aldehydes and Ketones. An important use for alkylphenols is ia phenol—formaldehyde resias. These resias are classified as resoles or aovolaks (see Phenolic resins). Resoles are produced whea oae or more moles of formaldehyde react with oae mole of pheaol uader basic catalysis. These resias are thermosets. Novolaks are thermoplastic resias formed whea an excess of phenol reacts with formaldehyde under acidic conditions. The acid protonates formaldehyde to generate the alkylating electrophile (17). [Pg.60]

AH commercial processes for the manufacture of caprolactam ate based on either toluene or benzene, each of which occurs in refinery BTX-extract streams (see BTX processing). Alkylation of benzene with propylene yields cumene (qv), which is a source of phenol and acetone ca 10% of U.S. phenol is converted to caprolactam. Purified benzene can be hydrogenated over platinum catalyst to cyclohexane nearly aH of the latter is used in the manufacture of nylon-6 and nylon-6,6 chemical intermediates. A block diagram of the five main process routes to caprolactam from basic taw materials, eg, hydrogen (which is usuaHy prepared from natural gas) and sulfur, is given in Eigute 2. [Pg.428]

Phenols. Phenols are unreactive toward chloroformates at room temperature and at elevated temperatures the yields of carbonates are relatively poor (< 10%) in the absence of catalysis. Many catalysts have been claimed in the patent Hterature that lead to high yields of carbonates from phenol and chloroformates. The use of catalyst is even more essential in the reaction of phenols and aryl chloroformates. Among the catalysts claimed are amphoteric metals or thek haUdes (16), magnesium haUdes (17), magnesium or manganese (18), secondary or tertiary amines such as imidazole (19), pyridine, quinoline, picoline (20—22), heterocycHc basic compounds (23) and carbonamides, thiocarbonamides, phosphoroamides, and sulfonamides (24). [Pg.39]

The relative basicity of carbonyl oxygen atoms can be measured by studying strength of hydrogen bonding between the carbonyl compound and a hydrogen donor such as phenol. In carbon tetrachloride, values of for 1 1 complex formation for the compounds shown have been measured. Rationalize the observed order of basicity. [Pg.545]

Adolph Baeyer is credited with the first recognition of the general nature of the reaction between phenols and aldehydes in 1872 ([2,5-7] [18], Table 5.1). He reported formation of colorless resins when acidic solutions of pyrogallic acid or resorcinol were mixed with oil of bitter almonds, which consists primarily benzaldehyde. Baeyer also saw resin formation with acidic and basic solutions of phenol and acetaldehyde or chloral. Michael and Comey furthered Baeyer s work with additional studies on the behavior of benzaldehyde and phenols [2,19]. They studied a variety of acidic and basic catalysts and noted that reaction vigor followed the acid or base strength of the catalyst. Michael et al. also reported rapid oxidation and darkening of phenolic resins when catalyzed by alkaline materials. [Pg.870]

The miotic effect induced by physostigmine lends itself to investigation of the interrelation of chemical constitution and pharmacological action, and Stedman has devoted much attention to this subject. Eseroline is devoid of miotic activity, so that the latter action in physostigmine must be mainly due to the fact that it is a methylurethane, and, since activity only becomes evident in the urethanes of phenolic bases or phenols with a basic side-chain, a basic nucleus for the urethanes appears also to be essential. [Pg.549]

The formate ester of phenol is rarely formed, but can be prepared from the phenol, formic acid, and DCC, 94-99% yield. The formate ester is not very stable to basic conditions or to other good nucleophiles. ... [Pg.276]

The idea that dichlorocarbene is an intermediate in the basic hydrolysis of chloroform is now one hundred years old. It was first suggested by Geuther in 1862 to explain the formation of carbon monoxide, in addition to formate ions, in the reaction of chloroform (and similarly, bromoform) with alkali. At the end of the last century Nef interpreted several well-known reactions involving chloroform and a base in terms of the intermediate formation of dichlorocarbene. These reactions included the ring expansion of pyrroles to pyridines and of indoles to quinolines, as well as the Hofmann carbylamine test for primary amines and the Reimer-Tiemann formylation of phenols. [Pg.58]

A more proper comparison regarding Vl-group nucleophilic reagents would be between the pairs PhO and PhS , and MeO" and MeS. However, both phenoxide and alkylsulfide ions are more basic than phenylsulfide ion, and their reactions are less amenable to study in alcoholic solution. For dilute solutions of phenoxide in methanol the equilibrium (9) shifts nearly half-way toward the right if a stoichiometric excess of phenol is not present. If phenoxide ion is less reactive... [Pg.314]

The reaction is generally believed to proceed via the formation of ionic acylam-monium intermediate compounds (Reaction 1, Scheme 2.27). The equilibrium constant of the acylammonium formation depends mostly on steric and resonance factors, while the basicity of the tertiary amine seems to play a secondary role.297 In die case of the less basic compounds, such as acidic phenols, and of strong tertiary amines, such as Uialkylamines, the reaction has been reported to proceed through a general base mechanism via the formation of hydroxy-amine H-bonded complexes (Reaction 2, Scheme 2.27).297... [Pg.76]

Phenolic oligomers are prepared by reacting phenol or substituted phenols with formaldehyde or other aldehydes. Depending on the reaction conditions (e.g., pH) and the ratio of phenol to formaldehyde, two types of phenolic resins are obtained. Novolacs are derived from an excess of phenol under neutral to acidic conditions, while reactions under basic conditions using an excess of formaldehyde result in resoles. [Pg.375]

Alkyl-substituted phenols have different reactivities than phenol toward reaction with formaldehyde. Relative reactivities determined by monitoring the disappearance of formaldehyde in phenol-paraformaldehyde reactions (Table 7.3) show that, under basic conditions, meta-cresol reacts with formaldehyde approximately three times faster titan phenol while ortho- and para-cresols react at approximately one-third the rate of phenol.18 Similar trends were observed for the reactivities of acid-catalyzed phenolic monomers with formaldehyde. [Pg.384]


See other pages where Basicity of phenol is mentioned: [Pg.14]    [Pg.14]    [Pg.103]    [Pg.322]    [Pg.529]    [Pg.531]    [Pg.535]    [Pg.245]    [Pg.248]    [Pg.14]    [Pg.171]    [Pg.14]    [Pg.14]    [Pg.103]    [Pg.322]    [Pg.529]    [Pg.531]    [Pg.535]    [Pg.245]    [Pg.248]    [Pg.14]    [Pg.171]    [Pg.128]    [Pg.54]    [Pg.199]    [Pg.202]    [Pg.35]    [Pg.65]    [Pg.476]    [Pg.918]    [Pg.255]    [Pg.352]    [Pg.114]    [Pg.292]    [Pg.114]    [Pg.195]    [Pg.1033]    [Pg.76]    [Pg.876]   
See also in sourсe #XX -- [ Pg.216 ]




SEARCH



Phenol basicity

The Basicity of Alcohols and Phenols

© 2024 chempedia.info