Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Paraffins, pour points

One remaining possibility that is less costly from an energy point of view but needs to be carefully controlled is to incorporate additives called flow improvers. These materials favor the dispersion of the paraffin crystals and in doing so prevent them from forming the large networks which cause the filter plugging. The conventional flow improvers essentially change the CFPP and pour point, but not the cloud point. They are usually copolymers, produced, for example, from ethylene and vinyl acetate monomers ... [Pg.216]

The pour point is the lowest temperature at which an oil can still pour while it is cooled, without agitation, under standardized conditions. The pour point of paraffinic bases is linked to the crystallization of n-paraffins. The pour point of naphthenic bases is related to a significant viscosity increase at low temperatures. This property can be improved by additives. [Pg.283]

During the production of mineral oils from vacuum distillates, one of the process steps, dewaxing , removes the high melting point materials in order to improve the oil s pour point. Dewaixing produces paraffins and waxes, the first coming from light distillates, and the second from medium or heavy distillates. [Pg.285]

The nature of these paraffins and their concentration in diesel fuel affect the three temperatures that characterize the cold behavior. The cloud point is the temperature at which crystals of paraffins appear when the temperature is lowered. The cold filter pluming point is defined as the temperature under which a suspension no ionger flows through a standard filter. Finally, the pour point is the temperature below which the diesel fuel no longer flows by simple gravity in a standard tube. These three temperatures are defined by regulations and the refiner has three types of additives to improve the quality of the diesel fuel of winter. [Pg.353]

Although lubricant base stocks have been subjected to dewaxing processes, they still contain large amounts of paraffins that result in a high pour point for the oil. In the paragraph on the cold behavior of diesel fuels, additives were mentioned that modify the paraffin crystalline system and oppose the precipitation of solids. [Pg.357]

Low temperature filtration (qv) is a common final refining step to remove paraffin wax in order to lower the pour point of the oil (14). As an alternative to traditional filtration aided by a propane or methyl ethyl ketone solvent, catalytic hydrodewaxing cracks the wax molecules which are then removed as lower boiling products. Finished lubricating oils are then made by blending these refined stocks to the desired viscosity, followed by introducing additives needed to provide the required performance. Table 3 Usts properties of typical commercial petroleum oils. Methods for measuring these properties are available from the ASTM (10). [Pg.237]

Pour-Point Depressants. The pour point of alow viscosity paraffinic oil may be lowered by as much as 30—40°C by adding 1.0% or less of polymethacrylates, polymers formed by Eriedel-Crafts condensation of wax with alkylnaphthalene or phenols, or styrene esters (22). As wax crystallizes out of solution from the Hquid oil as it cools below its normal pour point, the additive molecules appear to adsorb on crystal faces so as to prevent growth of an interlocking wax network which would otherwise immobilize the oil. Pour-point depressants become less effective with nonparaffinic and higher viscosity petroleum oils where high viscosity plays a dominant role in immobilizing the oil in a pour-point test. [Pg.242]

The pour point represents the lowest temperature at which the liquid fuel will pour. This is a useful consideration in the transport of fuels through pipelines. To determine the pour point, an oil sample contained in a test tube is heated up to 115°F (46°C) until the paraffin waxes have melted. The tube is then cooled in a bath kept at about 20°F (11°C) below the estimated pour point. The temperature at which the oil does not flow when the tube is horizontally positioned is termed the pour point. [Pg.324]

The pour point of a crude oil or product is the lowest temperature at which an oil is observed to flow under the conditions of the test. Pour point data indicates the amount of long-chain paraffins (petroleum wax) found in a crude oil. Paraffinic crudes usually have higher wax content than other crude types. Handling and transporting crude oils and heavy fuels is difficult at temperatures helow their pour points Often, chemical additives known as pour point depressants are used to improve the flow properties of the fuel. Long-chain n-paraffins ranging from 16-60 carhon atoms in particular, are responsible for near-ambient temperature precipitation. In middle distillates, less than 1% wax can be sufficient to cause solidification of the fuel. ... [Pg.21]

Paraffin crystalline waxes Apart from asphaltenes, a number of differing molecular weight paraffinic waxes are also present. These progressively crystallize at lowering temperatures (their respective pour points). These waxes increase friction and resistance to flow, so that the viscosity of the fuel is raised. This type of problem is controlled by the use of pour-point depressants (viscosity improvers), which limit the growth of the crystals at their nucleation sites within the fuel. They also have a dispersing effect. [Pg.672]

Cold flow improvers (pour point depressants) These viscosity improvers are often specified in cold climates for unheated gas oil or where existing residual oil heaters are inadequate. The use of these paraffin crystal modifiers permits fuel to continue to flow at temperatures of 30 to 40 °F lower than the point at which wax crystallization would normally occur. [Pg.685]

The techniques of paraffin removal and paraffin prevention have been reviewed [810]. In particular, inhibitors for paraffin deposits are copolymers of ethylene with vinylacetate [525-527,1597] or polymers from p-nonylphenyl methacrylate and p-dodecylphenyl methacrylate [773]. These materials lower the pour point of the oil. It has been shown that for oils which differ in the content of n-paraffins and asphalt-resinous substances, it is necessary to use blends of copolymers of different compositions and molecular weights to obtain optimal efficiency. Polyacrylamide and wastes from the production of glycerol with a concentration of 400 mg/liter of oil have also been claimed to be effective as paraffin inhibitors [536]. [Pg.159]

Petroleum becomes more or less a plastic solid when cooled to sufficiently low temperatures. This is due to the congealing of the various hydrocarbons that constitute the oil. The cloud point of petroleum (or a product) is the temperature at which paraffin wax or other solidifiable compounds present in the oil appear as a haze when the oil is chilled under definitely prescribed conditions (ASTM D2500, D3117). As cooling is continued, petroleum becomes more solid, and the pour point is the lowest temperature at which the oil pours or flows under definitely prescribed conditions when it is chilled without disturbance at a standard rate (ASTM D97). [Pg.44]

Paraffin isomerization of heavy alkane feeds is often used to alter the cloud or pour point of diesel or lube fractions. Catalysts for this reaction are almost always dual-function catalysts of Pt supported on a one-dimensional zeolite. Using a onedimensional zeolite allows control of the isomerized product to contain few branches, usually methyl branches (Table 12.4). [Pg.358]

The pour point of residual fuel is not the best measure of the low-temperature handling properties of the fuel. Viscosity measurements are considered more reliable. Nevertheless, residual fuels are classed as high pour and low pour fuels. Low-pour-point fuels have a maximum pour point of 60°F (15.5°C). There is no maximum pour point specified for high-pour-point residual fuels. A residual oil paraffin carbon number analysis is provided in FIGURE 3-1. [Pg.68]

Since highly aromatic fuels have little wax, they possess better natural low-temperature handling properties than paraffinic fuels. Also, the cloud point, pour point and low-temperature filtration of aromatic diesel fuel will typically be much lower than a paraffinic diesel fuel. [Pg.121]

For most distillate fuels, cloud point temperatures can range from 50°F to -10°F (10.0°C to -23.3°C) or lower. However, typical cloud point temperatures fall between 6°F and 16°F (-14.4°C and -8.9°C). Distillate blends having a high paraffin content will often have cloud point and pour point values close together, sometimes within 5°F (2.8°C). Highly aromatic blends will usually have cloud and pour point values further apart in temperature. [Pg.188]

Fuel may be highly paraffinic/waxy Fuel viscosity may be too high to effectively filter and pump at low temperatures Product is near or at its pour point... [Pg.263]

Because the paraffin and mixed-base crudes yield lubricating oil fractions of high quality, means had to be devised in the early days of the petroleum industry to separate the wax from the oil. The removal of wax from petroleum fractions is one of the most important phases in the production of lubricating oils and fuel oils of low pour point, and has received the attention of many investigators. [Pg.163]

Before 1925, there were a few compounded oils made for special purposes, such as lubrication of marine engines and steam cylinders, but additives were not used in automotive crankcase oils. In the 1930 s, chemical compounds made by condensation of chlorinated paraffin wax with naphthalene were found to lower the pour points of oils. Pour depressants (9) apparently are adsorbed on small wax crystals which separate from oils when they are chilled. The protective adsorbed layer of additive prevents the normal interlacing of larger wax crystals which forms a gel. In 1934 polymerized unsaturated hydrocarbons first came into large scale commercial use to lower the temperature coefficient of viscosity of oils. Other compounds for increasing the viscosity index of oils have since become common. [Pg.241]

Dewaxing is an important specific hydrocracking process used to improve diesel and heating oils by pour-point reduction.88 This is achieved by shape selectivity of certain zeolites allowing selective hydrocracking of long-chain paraffinic waxes to C3—C5 alkanes in the presence of other paraffins.89 Platinum H-mordenite is used in an industrial process.90... [Pg.38]

The first four of these properties have been discussed. Pour point is the lowest temperature, expressed as a multiple of 5°F, at which the liquid is observed to flow when cooled under prescribed conditions. Cloud point is the temperature at which paraffin wax begins to solidify and is identified by the onset of turbidity as the temperature is lowered. Both tests qualitatively measure the paraffin content of the liquid. [Pg.41]

Yield,a Run wt % of feed Cloud point, K Pour point, K n-paraffin content, wt % ... [Pg.233]

A test was made with 2,3-dimethylbutane as the supercritical solvent it has a lower critical temperature than 2,2,4-trimethyl-pentane. Operating at a temperature of 508-512 K, a pressure of 4.10-4.37 MPa, a molecular sieve/oil ratio of 6.39, and a solvent/ oil ratio of 21.3, the molecular sieve capacity attained is 5.73 g/100 g of molecular sieves (as compared to 3.2 g/100 g of molecular sieves with 2,2,4-trimethylpentane at 550 K). The n-paraffin content of the wax distillate was reduced by 88% to a level of 2 wt %, giving a pour point of 266 K. The yield of denormal oil was lower (63%) and the n-paraffin content of the desorbate was lower (44%) at this lower temperature level. This is probably due to increased capillary condensation. Conversely, operation at temperatures greater than 550 K should produce less capillary condensation and purer n-paraffin product. It would be interesting to try supercritical solvents with critical temperatures in the 600-670 K range. [Pg.240]


See other pages where Paraffins, pour points is mentioned: [Pg.317]    [Pg.262]    [Pg.264]    [Pg.237]    [Pg.240]    [Pg.353]    [Pg.201]    [Pg.1080]    [Pg.1324]    [Pg.228]    [Pg.229]    [Pg.317]    [Pg.22]    [Pg.59]    [Pg.922]    [Pg.82]    [Pg.251]    [Pg.283]    [Pg.31]    [Pg.38]    [Pg.237]    [Pg.33]    [Pg.193]    [Pg.235]    [Pg.237]   
See also in sourсe #XX -- [ Pg.31 ]




SEARCH



Pour point

Pouring

© 2024 chempedia.info