Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fuels pour point

Distillate fuel pour point temperatures can typically be reduced by 45°F to 60°F... [Pg.149]

Biodiesel has higher viscosity and higher pour points compared to typical diesel fuel, which could affect operation in very cold temperatures. Like diesel fuels, pour point additives are effective at decreasing pour point. [Pg.31]

The characteristics of diesel fuel taken into account in this area are the cloud point, the pour point, and the cold filter plugging point (CFPP). [Pg.214]

At lower temperatures, the crystals increase in size, and form networks that trap the liquid and hinder its ability to flow. The pour point is attained which can, depending on the diesel fuel, vary between -15 and -30°C. This characteristic (NF T 60-105) is determined, like the cloud point, with a very rudimentary device (maintaining a test tube in the horizontal position without apparent movement of the diesel fuel inside). [Pg.215]

Figure 5.9 shows an example of the efficiency of these products. The reductions of CFPP and pour point can easily attain 6 to 12°C for concentrations between 200 and 600 ppm by weight. The treatment cost is relatively low, on the order of a few hundredths of a Franc per liter of diesel fuel. In practice, a diesel fuel containing a flow improver is recognized by the large difference (more than 10°C) between the cloud point and the CFPP. [Pg.217]

It is mainly in cold behavior that the specifications differ between bome-heating oil and diesel fuel. In winter diesel fuel must have cloud points of -5 to -8°C, CFPPs from -15 to -18°C and pour points from -18 to 21°C according to whether the type of product is conventional or for severe cold. For home-heating oil the specifications are the same for all seasons. The required values are -l-2°C, -4°C and -9°C, which do not present particular problems in refining. [Pg.233]

The nature of these paraffins and their concentration in diesel fuel affect the three temperatures that characterize the cold behavior. The cloud point is the temperature at which crystals of paraffins appear when the temperature is lowered. The cold filter pluming point is defined as the temperature under which a suspension no ionger flows through a standard filter. Finally, the pour point is the temperature below which the diesel fuel no longer flows by simple gravity in a standard tube. These three temperatures are defined by regulations and the refiner has three types of additives to improve the quality of the diesel fuel of winter. [Pg.353]

Although lubricant base stocks have been subjected to dewaxing processes, they still contain large amounts of paraffins that result in a high pour point for the oil. In the paragraph on the cold behavior of diesel fuels, additives were mentioned that modify the paraffin crystalline system and oppose the precipitation of solids. [Pg.357]

Long-chain esters of pentaerythritol have been used as pour-point depressants for lubricant products, ranging from fuel oils or diesel fuels to the high performance lubricating oils requited for demanding outiets such as aviation, power turbines, and automobiles. These materials requite superior temperature, viscosity, and aging resistance, and must be compatible with the wide variety of metallic surfaces commonly used in the outiets (79—81). [Pg.466]

Some additives have the ability to lower the pour point without lowering the cloud point. A number of laboratory scale flow tests have been developed to provide a better prediction of cold temperature operability. They include the cold filter plugging point (CFPP), used primarily in Europe, and the low temperature flow test (LTFT), used primarily in the United States. Both tests measure flow through filter materials under controlled conditions of temperature, pressure, etc, and are better predictors of cold temperature performance than either cloud or pour point for addithed fuels. [Pg.192]

The increase in fuel viscosity with temperature decrease is shown for several fuels in Figure 9. The departure from linearity as temperatures approach the pour point illustrates the non-Newtonian behavior created by wax matrices. The freezing point appears before the curves depart from linearity. It is apparent that the low temperature properties of fuel are closely related to its distillation range as well as to hydrocarbon composition. Wide-cut fuels have lower viscosities and freezing points than kerosenes, whereas heavier fuels used in ground turbines exhibit much higher viscosities and freezing points. [Pg.415]

Pour point ranges from 213 K (—80°F) for some kerosene-type jet fuels to 319 K (115°F) for waxy No. 6 fuel oils. Cloud point (which is not measured on opaque fuels) is typically 3 to 8 K higher than pour point unless the pour has been depressed by additives. Typical petroleum fuels are practically newtonian liqmds between the cloua point and the boiling point and at pressures below 6.9 MPa (1000 psia). [Pg.2364]

Carbon residue, pour point, and viseosity are important properties in relation to deposition and fouling. Carbon residue is found by burning a fuel sample and weighing the amount of earbon left. The earbon residue property shows the tendeney of a fuel to deposit earbon on the fuel nozzles and eombustion liner. Pour point is the lowest temperature at whieh a fuel ean be poured by gravitational aetion. Viseosity is related to the pressure loss in pipe flow. Both pour point and viseosity measure the tendeney of a fuel to foul the fuel system. Sometimes, heating of the fuel system and piping is neeessary to assure a proper flow. [Pg.441]

Table 12-4 is a summary of liquid fuel speeifieations set by manufaeturers for effieient maehine operations. The water and sediment limit is set at 1% by maximum volume to prevent fouling of the fuel system and obstruetion of the fuel filters. Viseosity is limited to 20 eentistokes at the fuel nozzles to prevent elogging of the fuel lines. Also, it is advisable that the pour point be 20 °F (11 °C) below the minimum ambient temperature. Failure to meet this speeifieation ean be eorreeted by heating the fuel lines. Carbon residue should be less than 1% by weight based on 100% of the sample. The hydrogen eontent is related to the smoking tendeney of a fuel. Lower... [Pg.442]

The pour point is an indication of the lowest temperature at which a fuel oil can be stored and still be capable of flowing under gravitational forces. Fuels with higher pour points are permissible where the piping has been heated. Water and sediment in the fuel lead to fouling of the fuel system and obstruction in fuel filters. [Pg.444]

The pour point is the temperature at which the diesel fuel will no longer flow and is typically listed as... [Pg.340]

Other important properties include Hash point, volatility, viscosity, specific gravity, cloud point, pour point, and smoke point. Most of these properties are related directly to the boiling range of the kerosene and are not independently variable. The flash point, an index of fire hazard, measures the readiness of a fuel to ignite when exposed to a flame. It is usually mandated by law or government regulation to be 120° or 130° F (48° or 72° C), Volatility, as measured... [Pg.689]

Certain properties of a liquid fuel are measured routinely in a laboratory for characterization purposes. Besides density and viscosity, these properties include the pour point, the cloud point, and the flash point. Standard ASTM (American Society for Testing Materials) procedures are available for their determination. [Pg.324]

The pour point represents the lowest temperature at which the liquid fuel will pour. This is a useful consideration in the transport of fuels through pipelines. To determine the pour point, an oil sample contained in a test tube is heated up to 115°F (46°C) until the paraffin waxes have melted. The tube is then cooled in a bath kept at about 20°F (11°C) below the estimated pour point. The temperature at which the oil does not flow when the tube is horizontally positioned is termed the pour point. [Pg.324]

The pour point of a crude oil or product is the lowest temperature at which an oil is observed to flow under the conditions of the test. Pour point data indicates the amount of long-chain paraffins (petroleum wax) found in a crude oil. Paraffinic crudes usually have higher wax content than other crude types. Handling and transporting crude oils and heavy fuels is difficult at temperatures helow their pour points Often, chemical additives known as pour point depressants are used to improve the flow properties of the fuel. Long-chain n-paraffins ranging from 16-60 carhon atoms in particular, are responsible for near-ambient temperature precipitation. In middle distillates, less than 1% wax can be sufficient to cause solidification of the fuel. ... [Pg.21]

Paraffin crystalline waxes Apart from asphaltenes, a number of differing molecular weight paraffinic waxes are also present. These progressively crystallize at lowering temperatures (their respective pour points). These waxes increase friction and resistance to flow, so that the viscosity of the fuel is raised. This type of problem is controlled by the use of pour-point depressants (viscosity improvers), which limit the growth of the crystals at their nucleation sites within the fuel. They also have a dispersing effect. [Pg.672]

Cold flow improvers (pour point depressants) These viscosity improvers are often specified in cold climates for unheated gas oil or where existing residual oil heaters are inadequate. The use of these paraffin crystal modifiers permits fuel to continue to flow at temperatures of 30 to 40 °F lower than the point at which wax crystallization would normally occur. [Pg.685]

The lowest temperature at which fuel oil will flow. Residual oil (No. 6 oil) will not usually flow at ambient temperature and requires heating to reduce the viscosity and raise the pour point. [Pg.751]

On the other hand, in order to preserve the cold properties of the fuel (Cloud Point, Pour Point and low-temperature filterability), it is mandatory not to increase the melting point, that in turn depends on both the saturated compound (stearic acid, C18 0) content and the extent of cis/trans and positional isomerization as the difference in melting point between the cis and trans isomer is at least 15°C according to double bond position as shown in Table 1. [Pg.273]

D low sulfur Very low pour point fuel for use in high-speed engines requiring low-sulfur fuel also, for low-sulfur kerosene applications... [Pg.57]

Light Low-pour-point heavy distillate fuel for use in pressure-atomizing type burners... [Pg.57]

Low-pour-point fuel for use in residual fuel oil burners... [Pg.58]

The pour point value is used to predict the temperature at which cold fuel will gel and no longer flow. [Pg.59]

The pour point is an indication of the low-temperature handling properties of the fuel. High-density, low-IBP, low-EP, low-viscosity fuels will typically have good low-temperature handling properties. [Pg.66]

The pour point of residual fuel is not the best measure of the low-temperature handling properties of the fuel. Viscosity measurements are considered more reliable. Nevertheless, residual fuels are classed as high pour and low pour fuels. Low-pour-point fuels have a maximum pour point of 60°F (15.5°C). There is no maximum pour point specified for high-pour-point residual fuels. A residual oil paraffin carbon number analysis is provided in FIGURE 3-1. [Pg.68]

Some petroleum products, especially those containing higher-molecular-weight compounds such as waxes, do not crystallize rapidly when cooled. Instead, they form a gel-like network throughout the fuel matrix. This network can begin forming at temperatures well above the pour point of a fuel and may render the product unpumpable. [Pg.80]

It is recommended that any higher-viscosity product such as residual oil or heavy distillate fuel be evaluated for changes in low-temperature handling properties over time. Testing for reversion in pour point by the Shell Amsterdam Reversion Test or the British Admiralty Pour Point Reversion Test are recommended. Also, viscosity increase versus temperature decrease determinations are recommended for products stored at low temperatures for extended periods of time. [Pg.80]

Further cooling of the fuel leads to wax crystal formation throughout the fuel matrix. The growing wax crystals develop into a larger latticelike network encompassing the bulk fuel volume. This latticelike network eventually causes the fuel to become highly viscous and to eventually gel into a semisolid mass. The lowest temperature at which fuel remains in the liquid state just prior to gellation is called the pour point. [Pg.87]

Kerosene can be utilized effectively to reduce the pour point of most distillate fuels. The dilution limits are often based upon whether kerosene dilution will negatively impact fuel properties such as the viscosity, distillation parameters, sulfur limit, or cetane number. [Pg.88]


See other pages where Fuels pour point is mentioned: [Pg.56]    [Pg.56]    [Pg.85]    [Pg.192]    [Pg.192]    [Pg.203]    [Pg.338]    [Pg.690]    [Pg.59]    [Pg.217]    [Pg.33]   
See also in sourсe #XX -- [ Pg.441 ]




SEARCH



Aviation fuel pour point

Diesel fuel pour point

Diesel fuel pour point testing

Fuel oils pour point

Petroleum fuels pour point

Pour point

Pour point liquid fuels

Pouring

© 2024 chempedia.info