Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pantothenic acid with biotin

Eosinophilic pleural effusion with eosinophihc pericardial tamponade has been attributed to concomitant use of pantothenic acid and biotin (2). [Pg.517]

The normal situation seen with vitamins that have two or more stereoisomers is only one isomer is active. Thus a racemic (usually represented as d,D mixture contains 50%of the activity compared with an equimolar amount of the active isomer. Examples where only one isomer is active includes d-pantothenic acid, D-biotin, and D-ascorbic acid. [Pg.419]

The UV—diode array [132,134—136,139,140] and fluorescence detection [141,142] have been used to develop multivitamin LC methods, which, however, remain limited to a few analytes responding to the same detection system and extracted quantitatively with the same procedure. Moreover, by means of a UV detector, other difficulties are represented by the absence of a strong chromophoric group in some vitamins (pantothenic acid and biotin), which absorb with modest sensitivity in the low UV region only, where the selectivity is scarce (absorption of interfering compoimds). [Pg.500]

In terms of amino acids bacterial protein is similar to fish protein. The yeast s protein is almost identical to soya protein fungal protein is lower than yeast protein. In addition, SCP is deficient in amino acids with a sulphur bridge, such as cystine, cysteine and methionine. SCP as a food may require supplements of cysteine and methionine whereas they have high levels of lysine vitamins and other amino acids. The vitamins of microorganisms are primarily of the B type. Vitamin B12 occurs mostly hi bacteria, whereas algae are usually rich in vitamin A. The most common vitamins in SCP are thiamine, riboflavin, niacin, pyridoxine, pantothenic acid, choline, folic acid, inositol, biotin, B12 and P-aminobenzoic acid. Table 14.4 shows the essential amino acid analysis of SCP compared with several sources of protein. [Pg.339]

Some enzymes associate with a nonprotein cofactor that is needed for enzymic activity. Commonly encountered cofactors include metal ions such as Zn2+ or Fe2+, and organic molecules, known as coenzymes, that are often derivatives of vitamins. For example, the coenzyme NAD+contains niacin, FAD contains riboflavin, and coenzyme A contains pantothenic acid. (See pp. 371-379 for the role of vitamins as precursors of coenzymes.) Holoenzyme refers to the enzyme with its cofactor. Apoenzyme refers to the protein portion of the holoenzyme. In the absence of the appropriate cofactor, the apoenzyme typically does not show biologic activity. A prosthetic group is a tightly bound coenzyme that does not dissociate from the enzyme (for example, the biotin bound to carboxylases, see p. 379). [Pg.54]

Vitamins are chemically unrelated organic compounds that cannot be synthesized by humans and, therefore, must must be supplied by the diet. Nine vitamins (folic acid, cobalamin, ascorbic acid, pyridoxine, thiamine, niacin, riboflavin, biotin, and pantothenic acid) are classified as water-soluble, whereas four vitamins (vitamins A, D, K, and E) are termed fat-soluble (Figure 28.1). Vitamins are required to perform specific cellular functions, for example, many of the water-soluble vitamins are precursors of coenzymes for the enzymes of intermediary metabolism. In contrast to the water-soluble vitamins, only one fat soluble vitamin (vitamin K) has a coenzyme function. These vitamins are released, absorbed, and transported with the fat of the diet. They are not readily excreted in the urine, and significant quantities are stored in Die liver and adipose tissue. In fact, consumption of vitamins A and D in exoess of the recommended dietary allowances can lead to accumulation of toxic quantities of these compounds. [Pg.371]

Vitamins are required for satisfactory development or function of most yeasts. Wickerham (177) devised a complete yeast medium which included eight vitamins biotin, pantothenic acid, inositol, niacin, p-aminobenzoic acid, pyridoxine, thiamine, and riboflavin. The concentrations of these growth factors varied widely with inositol in the greatest concentration and biotin in trace amounts. Many of these vitamins are considered major growth factors for yeast multiplication and development, as noted in several studies and reviews (178, 179, 180, 181, 182). Generally, the benefit of adding vitamins to musts and wines has not been established as a normal winery practice. This lack of response is because vitamins occur naturally in sufficient quantities in grapes and are produced by yeasts themselves (3). [Pg.40]

Fenech, M., Baghurst, P., Luderer, W., Turner, J., Record, S., Ceppi, M., and Bonassi, S. (2005). Low intake of calcium, folate, nicotinic acid, vitamin E, retinol, beta-carotene and high intake of pantothenic acid, biotin and riboflavin are significantly associated with increased genome instability—Results from a dietary intake and micronucleus index survey in South Australia. Carcinogenesis 26, 991-999. [Pg.36]

Canola meal is a good source of choline, niacin and riboflavin, but not folic acid or pantothenic acid. It contains one of the highest levels of biotin found typically in North American feed ingredients. Total biotin in canola meal was found to average 1231 pg/kg with a bioavailability for growing broilers of 0.66 compared with 0.17 for wheat, 0.2 for triticale, 0.21 for barley, 0.39 for sorghum, 0.98 for soybean meal and 1.14 for maize (Blair and Misir, 1989). [Pg.100]

The CP content of cottonseed meal may vary from 360 to 410g/kg, depending on the contents of hulls and residual oil. AA content and digestibility of cottonseed meal are lower than in soybean meal. Although fairly high in protein, cottonseed meal is low in lysine and tryptophan. The fibre content is higher in cottonseed meal than in soybean meal, and its ME value is inversely related to the fibre content. Cottonseed meal is a poorer source of minerals than soybean meal. The content of carotene is low in cottonseed meal, but this meal compares favourably with soybean meal in water-soluble vitamin content, except biotin, pantothenic acid and pyridoxine. [Pg.103]

As with the main cereals, faba beans are a relatively poor source of Ca and are low in iron and Mn. The P content is higher than in canola. Faba beans contain lower levels of biotin, choline, niacin, pantothenic acid and riboflavin, but a higher level of thiamin, than soybean meal or canola meal. [Pg.123]

The discovery, isolation and final synthesis of a whole group of new compounds essential to health in a balanced diet was another triumph of the chemist. These compounds called vitamins A, Ba or G, C, D, E, K, and several others closely associated with vitamin Ba, such as niacin, pantothenic acid, inositol, para-amino benzoic acid, choline, pyndoxine (Be), biotin (H), folic acid and Bn, prevent deficiency diseases such as xerophthalmia (an eye disease), beriberi, pellagra, scurvy, rickets, sterility (in rats), excessive bleeding and so forth. Professors Elmer V. McCollum and Herbert M. Evans, and Joseph Goldberger were among the early American pioneers in this field of research. Drugs, anaesthetics, and medicines like procaine, cyclopropane, dramamme, ephedrine, aspirin, phenace-tin, urotropin, veronal, quinine, and strychnine have been synthesized to alleviate the pains of mankind. The essential... [Pg.122]

Said HM, Ortiz A, McCloud E, Dyer D, Moyer MP, and Ruhin S (1998) Biotin uptake hy human colonic epithelial NCM460 cells a carrier-mediated process shared with pantothenic acid. American Journal of Physiology 275, C1365-71. [Pg.449]

The energy content of sunflower meal compares favorably with that of other oilseed meals and increases as the residual oil content increases and as the fiber content decreases. Sunflower meal also compares favorably with other oilseed meals as a source of calcium and phosphorus (36) and is an excellent source of water-soluble B-complex vitamins, namely nicotinic acid, thiamine, pantothenic acid, riboflavin, and biotin. [Pg.2367]

B. The synthesis of fatty acids from glucose occurs in the cytosol, except for the mitochondrial reactions in which pyruvate is converted to citrate. Biotin is required for the conversion of pyruvate to oxaloacetate, which combines with acetyl CoA to form citrate. Biotin is also required by acetyl CoA carboxylase. Pantothenic acid is covalently bound to the fatty acid synthase complex as part of a phosphopantetheinyl residue. The growing fatty acid chain is attached to this residue during the sequence of reactions that produce palmitic acid. NADPH, produced by the malic enzyme as well as by the pentose phosphate pathway, provides reducing equivalents. Citrate, not isocitrate, is a key regulatory compound. [Pg.225]

The B group vitamins and vitamin C serve as coenzymes or coenzyme precursors. The B complex includes thiamine, riboflavin, pyridoxine, niacin, pantothenic acid, biotin, folate, and cobalamin. Inositol, choline, and paraaminoben-zoic acid, usually classified as vitamin-like substances in humans, are sometimes included with the B-complex vitamins. They will be discussed briefly at the end of the chapter. The B vitamins occur in protein-rich foods... [Pg.914]

The chemistry of the cofactors has provided a fertile area of overlap between organic chemistry and biochemistry, and the organic chemistry of the cofactors is now a thoroughly studied area. In contrast, the chemistry of cofactor biosynthesis is stiU relatively underdeveloped. In this review the biosynthesis of nicotinamide adenine dinucleotide, riboflavin, folate, molyb-dopterin, thiamin, biotin, Upoic acid, pantothenic acid, coenzyme A, S-adenosylmethionine, pyridoxal phosphate, ubiquinone and menaquinone in E. coli will be described with a focus on unsolved mechanistic problems. [Pg.93]

Vitamin requirements for ESKD patients receiving dialysis differ from those of a healthy person because of dietary modifications, kidney dysfunction, and dialysis therapy. The plasma concentrations of vitamins A and E are elevated in ESKD, while those of the water-soluble vitamins (81,82,8g, 812, niacin, pantothenic acid, folic acid, biotin, and vitamin C) tend to be low in this population, in large part due to the fact that many are dialyzable. The goal for vitamin supplementation in this population should be to prevent subclinical and frank deficiency and to avoid pathology from overdosage. Special vitamin supplements have been formulated for the dialysis population, which primarily include 8 vitamins with C and folic acid. [Pg.846]


See other pages where Pantothenic acid with biotin is mentioned: [Pg.5]    [Pg.2676]    [Pg.151]    [Pg.419]    [Pg.208]    [Pg.8]    [Pg.7]    [Pg.479]    [Pg.5]    [Pg.216]    [Pg.66]    [Pg.279]    [Pg.192]    [Pg.126]    [Pg.299]    [Pg.707]    [Pg.296]    [Pg.46]    [Pg.125]    [Pg.134]    [Pg.102]    [Pg.111]    [Pg.346]    [Pg.1357]    [Pg.28]    [Pg.5]    [Pg.517]    [Pg.913]    [Pg.1108]    [Pg.361]   
See also in sourсe #XX -- [ Pg.149 ]




SEARCH



Pantothenate

Pantothenate pantothenic acid

Pantothenic acid

© 2024 chempedia.info