Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxide films electrode materials

The first method employing internal reflection requires special cell and electrode configurations. The very thin metal (or oxide) film electrode needs to be evaporated on an optical material such as a quartz prism. It makes routine surface pretreatment and measurement very difficult, and indeed, this method has not been adapted commonly in spectroelec-trochemistry. The best way to carry out measurements with severe gas evolution is a combination of (2) and (3), although they have their own drawbacks. [Pg.627]

In tenns of an electrochemical treatment, passivation of a surface represents a significant deviation from ideal electrode behaviour. As mentioned above, for a metal immersed in an electrolyte, the conditions can be such as predicted by the Pourbaix diagram that fonnation of a second-phase film—usually an insoluble surface oxide film—is favoured compared with dissolution (solvation) of the oxidized anion. Depending on the quality of the oxide film, the fonnation of a surface layer can retard further dissolution and virtually stop it after some time. Such surface layers are called passive films. This type of film provides the comparably high chemical stability of many important constmction materials such as aluminium or stainless steels. [Pg.2722]

A critical issue is the stabiUty of the hydride electrode in the cell environment. A number of hydride formulations have been developed. Table 5 shows hydride materials that are now the focus of attention. Most of these are Misch metal hydrides containing additions of cobalt, aluminum, or manganese. The hydrides are prepared by making melts of the formulations and then grinding to fine powers. The electrodes are prepared by pasting and or pressing the powders into metal screens or felt. The additives are reported to retard the formation of passive oxide films on the hydrides. [Pg.562]

For a large number of applications involving ceramic materials, electrical conduction behavior is dorninant. In certain oxides, borides (see Boron compounds), nitrides (qv), and carbides (qv), metallic or fast ionic conduction may occur, making these materials useful in thick-film pastes, in fuel cell apphcations (see Fuel cells), or as electrodes for use over a wide temperature range. Superconductivity is also found in special ceramic oxides, and these materials are undergoing intensive research. Other classes of ceramic materials may behave as semiconductors (qv). These materials are used in many specialized apphcations including resistance heating elements and in devices such as rectifiers, photocells, varistors, and thermistors. [Pg.349]

The recent development of the convertible oxide materials at Fuji Photo Film Co. will surely cause much more attention to be given to alternative lithium alloy negative electrode materials in the near future from both scientific and technological standpoints. This work has shown that it may pay not only to consider different known materials, but also to think about various strategies that might be used to form attractive materials in situ inside the electrochemical cell. [Pg.379]

Semiconductors. In Sections 2.4.1, 4.5 and 5.10.4 basic physical and electrochemical properties of semiconductors are discussed so that the present paragraph only deals with practically important electrode materials. The most common semiconductors are Si, Ge, CdS, and GaAs. They can be doped to p- or n-state, and used as electrodes for various electrochemical and photoelectrochemical studies. Germanium has also found application as an infrared transparent electrode for the in situ infrared spectroelectrochemistry, where it is used either pure or coated with thin transparent films of Au or C (Section 5.5.6). The common disadvantage of Ge and other semiconductors mentioned is their relatively high chemical reactivity, which causes the practical electrodes to be almost always covered with an oxide (hydrated oxide) film. [Pg.319]

Metal oxides. Noble metals are covered with a surface oxide film in a broad range of potentials. This is still more accentuated for common metals, and other materials of interest for electrode preparation, such as semiconductors and carbon. Since the electrochemical charge transfer reactions mostly occur at the surface oxide rather than at the pure surface, the study of electrical and electrochemical properties of oxides deserves special attention. [Pg.320]

Iridium as an electrode material has received considerable attention in the last decade not only because of its excellent catalytic properties but also in relation to the electrochromic effect observed for anodic iridium oxide films (AIROF). Electrochromism of iridium was thought to be of technical relevance for display applications and triggered several studies of the electrochemical and optical properties of AlROFs [67, 85-88],... [Pg.109]

With these solid-oxide electrolytes, designed to operate in relatively 02-rich feed (e.g. air), gas-diffusion electrodes with their enhanced contact area, are not necessary, and electrode materials can be applied directly onto the electrolyte surfaces in thin films. [Pg.212]

Polymeric films of [(//5-C s Me5)M(L)Cl]+complexes (M = Ir, Rh L = pyrrole-substituted bpy or phen) have been coated on an electrode by oxidative electropolymerization. The buildup of hydrido complexes in films is well known 27,28,30 the high electrocatalytic activity of these molecular electrode materials towards dihydrogen evolution in organic and aqueous electrolytes is also well known.25,31 For example, H2 is evolved at —0.55 V vs. SCE at a poly [(j75-C5Me5)-Rh(bpy)Cl]+ film in pH 1 aqueous solution.31... [Pg.476]

The electrochemical behavior of thin-film oxide-hydroxide electrodes containing chromium, nickel and cobalt compounds was investigated. Experimental results have shown that such compounds can be successfully used as active cathodic materials in a number of emerging primary and secondary battery applications. [Pg.493]

Intermediate Temperature Solid Oxide Fuel Cell (ITSOFC) The electrolyte and electrode materials in this fuel cell are basically the same as used in the TSOFC. The ITSOFC operates at a lower temperature, however, typically between 600 to 800°C. For this reason, thin film technology is being developed to promote ionic conduction alternative electrolyte materials are also being developed. [Pg.19]

Dr. Hui has worked on various projects, including chemical sensors, solid oxide fuel cells, magnetic materials, gas separation membranes, nanostruc-tured materials, thin film fabrication, and protective coatings for metals. He has more than 80 research publications, one worldwide patent, and one U.S. patent (pending). He is currently leading and involved in several projects for the development of metal-supported solid oxide fuel cells (SOFCs), ceramic nanomaterials as catalyst supports for high-temperature PEM fuel cells, protective ceramic coatings on metallic substrates, ceramic electrode materials for batteries, and ceramic proton conductors. Dr. Hui is also an active member of the Electrochemical Society and the American Ceramic Society. [Pg.462]

A1 is thermodynamically unstable, with an oxidation potential at 1.39 V. Its stability in various applications comes from the formation of a native passivation film, which is composed of AI2O3 or oxyhydroxide and hydroxide.This protective layer, with a thickness of 50 nm, not only stabilizes A1 in various nonaqueous electrolytes at high potentials but also renders the A1 surface coating-friendly by enabling excellent adhesion of the electrode materials. It has been reported that with the native film intact A1 could maintain anodic stability up to 5.0 V even in Lilm-based electrolytes. Similar stability has also been observed with A1 pretreated at 480 °C in air, which remains corrosion-free in LiC104/EC/ DME up to 4.2 However, since mechanical... [Pg.109]

Henry White was born in Chapel Hill. North Carolina in 1956. He received a B.S. in Chemistry from the University of North Carolina in 1978 and a Ph.D. in Chemistry from the University of Texas at Austin in 1982. He held a postdoctoral appointment at the Massachusetts Institute of Technology from 1983 to 1984 and was on the faculty of the Department of Chemical Engineering and Materials Science at the University of Minnesota from 1984 to 1993. He is currently a Professor of Chemistry at the University of Utah. His research interests include magnetic-field-induced transport, oxide films and corrosion, iontophoretic transdermal drug delivery, and electrochemical phenomena at electrodes of nanometer dimensions. [Pg.225]


See other pages where Oxide films electrode materials is mentioned: [Pg.85]    [Pg.37]    [Pg.37]    [Pg.392]    [Pg.224]    [Pg.146]    [Pg.117]    [Pg.198]    [Pg.163]    [Pg.213]    [Pg.289]    [Pg.227]    [Pg.257]    [Pg.495]    [Pg.53]    [Pg.254]    [Pg.299]    [Pg.561]    [Pg.569]    [Pg.585]    [Pg.243]    [Pg.223]    [Pg.303]    [Pg.57]    [Pg.116]    [Pg.296]    [Pg.302]    [Pg.372]    [Pg.162]    [Pg.332]    [Pg.332]    [Pg.334]    [Pg.182]    [Pg.234]    [Pg.552]   
See also in sourсe #XX -- [ Pg.178 ]




SEARCH



Electrode material

Film electrodes

Film materials

Oxidation electrode

Oxidation films

Oxidation materials

Oxide materials

Oxidized material

Oxidizing material

© 2024 chempedia.info