Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Organic Layers

Order and dense packing are relative in tire context of tliese systems and depend on tire point of view. Usually tire tenn order is used in connection witli translational symmetry in molecular stmctures, i.e. in a two-dimensional monolayer witli a crystal stmcture. Dense packing in organic layers is connected witli tire density of crystalline polyetliylene. [Pg.2624]

Addition of dilute potassium dichromate(VI) solution, K2Cr207, to a solution of hydrogen peroxide produces chromium peroxide, CrOj, as an unstable blue coloration on adding a little ether and shaking this compound transfers to the organic layer in which it is rather more stable. [Pg.281]

Like bromine, iodine is soluble in organic solvents, for example chloroform, which can be used to extract it from an aqueous solution. The iodine imparts a characteristic purple colour to the organic layer this is used as a test for iodine (p. 349). NB Brown solutions are formed when iodine dissolves in ether, alcohol, and acetone. In chloroform and benzene a purple solution is formed, whilst a violet solution is produced in carbon disulphide and some hydrocarbons. These colours arise due to charge transfer (p. 60) to and from the iodine and the solvent organic molecules. [Pg.320]

Reduction of A-nitrosomethylaniline. Into a 1 litre round-bottomed flask, fitted with a reflux condenser, place 39 g. of A-nitroso-methylaniline and 75 g. of granulated tin. Add 150 ml. of concentrated hydrochloric acid in portions of 25 ml. (compare Section IV.34) do not add the second portion until the vigorous action produced by the previous portion has subsided, etc. Heat the reaction mixture on a water bath for 45 minutes, and allow to cool. Add cautiously a solution of 135 g. of sodium hydroxide in 175 ml. of water, and steam distil (see Fig. II, 40, 1) collect about 500 ml. of distillate. Saturate the solution with salt, separate the organic layer, extract the aqueous layer with 50 ml. of ether and combine the extract with the organic layer. Dry with anhydrous potassium carbonate, remove the ether on a water bath (compare Fig. II, 13, 4), and distil the residual liquid using an air bath (Fig. II, 5, 3). Collect the pure methylaniline at 193-194° as a colourless liquid. The yield is 23 g. [Pg.570]

Pure dialkylanilines may be prepared by refluxing the monoalkylaniline (1 mol) with an alkyl bromide (2 mols) for 20-30 hours the solid product is treated with excess of sodium hydroxide solution, the organic layer separated, dried and distilled. The excess of alkyl bromide paases over first, followed by the dialkylaniline. Di-n-propylaniline, b.p. 242-243°, and di-n-butylaniline b.p. 269-270°, are thus readily prepared. [Pg.572]

The first portion of the steam distillate consists almost entirely of tetrachloroethane and water. The solvent is recovered by separating the organic layer, drying with anhydrous calcium chloride or magnesium sulphate and distilling. [Pg.702]

Neutralise the cold contents of the flask with 500-600 ml. of 40 per cent, aqueous sodium hydroxide solution, equip the flask for steam distillation and steam distil until about 1 litre of distillate is collected. The steam distillate separates into two layers. Add solid sodium hydroxide (< 100 g.) to complete the separation of the two layers as far as possible. Remove the upper (organic) layer and extract the aqueous layer with three 50 ml. portions of chloroform. Dry the combined organic layer and chloroform extracts with anhydrous potassium carbonate and distil the mixture through a short fractionating column (e.g., an 8 Dufton column) after a fore run of chloroform, followed by pyridine, collect the crude 4-ethylpyridine at 150-166° (49 g.). Redistil through a Fenske-... [Pg.844]

Ethyl propane-1 1 3 3-tetracarboxylate. Cool a mixture of 320 g. (302 ml.) of redistilled diethyl malonate and 80 g. of 40 per cent, formaldehyde solution ( formalin ) contained in a 1-htre round-bottomed flask to 5° by immersion in ice, and add 5 g. (7 ml.) of diethylamine. Keep the mixture at room temperature for 15 hours and then heat under a reflux condenser on a boiling water bath for 6 hours. Separate the aqueous layer, dry the organic layer with anhydrous magnesium sulphate, and distil under reduced pressure. Collect the ethyl 1 1 3 3-tetracarboxylate at 200-215°/20 mm. The yield is 250 g. [Pg.914]

Introduce a solution of 100 g. of sodium bisulphite in 200 ml. of water and continue the stirring, preferably for 10 hours with exclusion of air. A thick precipitate separates after a few minutes. Collect the bisulphite compound by suction filtration, wash it with ether until colourless, and then decompose it in a flask with a lukewarm solution of 125 g. of sodium carbonate in 150 ml. of water. Separate the ketone layer, extract the aqueous layer with four 30 ml. portions of ether, dry the combined organic layers over anhydrous magnesium sulphate, remove the ether at atmospheric pressure, and distil the residual oil under reduced pressure from a Qaisen flask with fractionating side arm (Fig. II, 24, 5). Collect the cyclo-heptanone at 64r-65°/12 mm. the yield is 23 g. [Pg.947]

Step 4. The steam-volatile neutral compounds. The solution (containing water-soluble neutral compounds obtained in Step 1 is usually very dilute. It is advisable to concentrate it by distillation until about one-third to one-half of the original volume is collected as distillate the process may be repeated if necessary and the progress of the concentration may be followed by determination of the densities of the distillates. It is frequently possible to salt out the neutral components from the concentrated distillate by saturating it with solid potassium carbonate. If a layer of neutral compound makes its appearance, remove it. Treat this upper layer (which usually contains much water) with solid anhydrous potassium carbonate if another aqueous layer forms, separate the upper organic layer and add more anhydrous potassium carbonate to it. Identify the neutral compound. [Pg.1099]

Alkvl Azides from Alkyl Bromides and Sodium Azide General procedure for the synthesis of alkyl azides. In a typical experiment, benzyl bromide (360 mg, 2.1 mmol) in petroleum ether (3 mL) and sodium azide (180 mg, 2.76 mmol) in water (3 mL) are admixed in a round-bottomed flask. To this stirred solution, pillared clay (100 mg) is added and the reaction mixture is refluxed with constant stirring at 90-100 C until all the starting material is consumed, as obsen/ed by thin layer chromatographv using pure hexane as solvent. The reaction is quenched with water and the product extracted into ether. The ether extracts are washed with water and the organic layer dried over sodium sulfate. The removal of solvent under reduced pressure affords the pure alkyl azides as confirmed by the spectral analysis. ... [Pg.156]

To a solution of 0.35 mol of allenyllithium in 240 ml of hexane and 200 ml of THF (see Chapter II, Exp. 13) were added 25 g of dry HMPT at -80°C. Subsequently 0.30 mol of l-bromo-3-chloropropane were added in 10 min. The reaction was very exothermic, but could be kept under control by occasional cooling in a bath with liquid nitrogen. After an additional 10 min the cooling bath was removed and the temperature was allowed to rise to -30°C. The solution was then poured into 500 ml of water. The organic layer and three ethereal extracts were dried over magnesium sulfate. The solvents were distilled off as thoroughly as possible at... [Pg.30]

A mixture of 0.10 mol of freshly distilled 3-methyl-3-chloro-l-butyne (see Chapter VIII-3, Exp. 5) and 170 ml of dry diethyl ether was cooled to -100°C and 0.10 mol of butyllithium in about 70 ml of hexane was added at this temperature in 10 min. Five minutes later 0.10 mol of dimethyl disulfide was introduced within 1 min with cooling betv/een -100 and -90°C. The cooling bath vjas subsequently removed and the temperature was allowed to rise. Above -25°C the clear light--brown solution became turbid and later a white precipitate was formed. When the temperature had reached lO C, the reaction mixture was hydrolyzed by addition of 200 ml of water. The organic layer and one ethereal extract were dried over potassium carbonate and subsequently concentrated in a water-pump vacuum (bath... [Pg.75]

A solution of methylmagnesium bromide in 150 ml of diethyl ether, prepared from 0.5 mol of methyl bromide (see Chapter II, Exp. 5) was subsequently added in 20 min with cooling at about 20°C. After the addition the mixture was warmed for 2 h under reflux (the thermometer and gas outlet were replaced with a reflux condenser), a black slurry being formed on the bottom of the flask. The mixture was cooled in a bath of dry-ice and acetone and a solution of 30 g of ammonium chlori.de in 200 ml of water was added with vigorous stirring. The organic layer and four ethereal extracts were combined, dried over potassium carbonate and subsequently concentrated in a water-pump vacuum. Careful distillation of the residue through a 40-cm... [Pg.170]


See other pages where Organic Layers is mentioned: [Pg.347]    [Pg.1683]    [Pg.1704]    [Pg.55]    [Pg.289]    [Pg.322]    [Pg.572]    [Pg.599]    [Pg.671]    [Pg.702]    [Pg.703]    [Pg.716]    [Pg.718]    [Pg.730]    [Pg.765]    [Pg.767]    [Pg.827]    [Pg.833]    [Pg.854]    [Pg.907]    [Pg.907]    [Pg.935]    [Pg.1042]    [Pg.1042]    [Pg.237]    [Pg.2]    [Pg.34]    [Pg.51]    [Pg.56]    [Pg.107]    [Pg.121]    [Pg.123]    [Pg.149]    [Pg.158]    [Pg.160]    [Pg.173]    [Pg.179]   
See also in sourсe #XX -- [ Pg.8 ]




SEARCH



Adsorbed layer, organic

Adsorbed layer, organic transformations

Adsorbed protein layer, organization

Catalyst layer ionomer self-organization

Catalyst layer self-organization

Composite Layers for Organic Solar Cells

Double layer, organic

Double-layered organic electroluminescent device

Extraction organic layer

Gate Dielectrics and Surface Passivation Layers for Organic Field Effect Transistors

Layer self-organization

Layered silicates organic modification

Layering, self-organized

Layers epitaxial organic

Mineral-organic layers

Organic Electrolyte Layer on Electrodes

Organic layered silicates

Organic materials as planarizing layers

Organic polymer alignment layers

Organic single-layer

Organic solar cells active layer

Organic thin-film transistor insulating layers

Organic three-layer

Organic-inorganic layered phosphonates

Organic-inorganic perovskites layer perovskite materials

Organically Modified Layered Silicate Reinforced PLA Nanocomposites

Organically Modified Layered Silicate Reinforced Thermoplastic Starch (TPS) Nanocomposites

Organically modified layered fillers

Organically modified layered silicate

Organically modified layered silicate (OMLS

Pillared-layer metal-organic frameworks

Pt catalysts covered with organosilica layers on dehydrogenation of organic hydride

Self-Organization in Catalyst Layers Concluding Remarks

Self-organization in catalyst layers

Supported organic layer catalysts

Supported organic layer catalysts for room temperature catalytic fluorination

Thin-layer chromatography , organic

Thin-layer chromatography , organic synthesis

© 2019 chempedia.info