Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cooling bath

Solid CO2 with chloroform or acetone Solid CO2 (powdered CO2 snow) [Pg.38]

Solid CO2 with diethyl ether liquid nitrogen (see footnote ) [Pg.38]

Alternatively, the following liquids can be used, partially frozen, as cryostats, by adding solid CO2 from time to time to the material in a Dewar-type container and stirring to make a slush  [Pg.38]


Electrolysis cell. This is shown in Fig. VI, 31, 1 and is almost self-explanatory. The cylindrical cell of Pyrex glass (6" long by 2 " diameter) is cooled by immersion in a cooling bath. The electrodes consist of two platinum plates (4 cm. X 2-5 cm. X 0-3 mm.), which are placed about 2 mm. apart. The temperature of the electrolyte is maintained at 30-35° by means of the internal cooling coil and also by immersion of the cell in ice-water. A current of 1 5-2 0 amperes is passed until the electrolyte becomes slightly alkaline, which normally takes about 20-50 per cent, longer than the calculated time on the basis of the current and the amounts of acid employed. It is advantageous to reverse the direction of the current occasionally. [Pg.939]

Apparatus-. 1-1 three-necked, round-bottomed flask with a thermometer+gas outlet, a stirrer and a gas inlet. During the experiment a slow stream of nitrogen was passed through the flask. A Dewar flask containing liquid nitrogen (note 1) was used as a cooling bath. [Pg.21]

To a solution of 0.35 mol of allenyllithium in 240 ml of hexane and 200 ml of THF (see Chapter II, Exp. 13) were added 25 g of dry HMPT at -80°C. Subsequently 0.30 mol of l-bromo-3-chloropropane were added in 10 min. The reaction was very exothermic, but could be kept under control by occasional cooling in a bath with liquid nitrogen. After an additional 10 min the cooling bath was removed and the temperature was allowed to rise to -30°C. The solution was then poured into 500 ml of water. The organic layer and three ethereal extracts were dried over magnesium sulfate. The solvents were distilled off as thoroughly as possible at... [Pg.30]

The reaction was strongly exothermic. After the addition the cooling bath was removed and after 20 min the almost clear solution was poured into 500 ml of water. After shaking and separation of the layers the organic solution was washed five times with 200-ml portions of water in order to remove the HMPT (note 2). [Pg.31]

To a solution of 0.30 mol of ethyllithium (note 1) in about 270 ml of diethyl ether (see Chapter II, Exp. 1) v/as added 0.30 mol of methoxyallene at -20°C (see Chapter IV, Exp. 4) at a rate such that the temperature could be kept between -15 and -2Q°C. Fifteen minutes later a mixture of 0.27 mol of >z-butyl bromide and 100 ml of pure, dry HMPT ivas added in 5 min with efficient cooling, so that the temperature of the reaction mixture remained below 0°C. The cooling bath was then removed and the temperature was allowed to rise. After 4 h the brown reaction mixture was poured into 200 ml of ice-water. The aqueous layer was extracted twice with diethyl ether. The combined solutions were washed with concentrated ammonium chloride solution (which had been made slightly alkaline by addition of a few millilitres of aqueous ammonia, note 2) and dried over potassium carbonate. After addition of a small amount (2-5 ml) of... [Pg.37]

A solution of a-lithiomethoxyallene was prepared from nethoxyal lene and 0.20 mol of ethyllithiurn (note 1) in about 200 ml of diethyl ether (see Chapter II, Exp. 15). The solution was cooled to -50°C and 0.20 mol of ethylene oxide was added immediately. The cooling bath was removed temporarily and the temperature was allowed to rise to -15 c and was kept at this level for 2.5 h. The mixture was then poured into 200 ml of saturated ammonium chloride solution, to which a few millilitres of aqueous ammonia had been added (note 2). After shaking the layers were separated. The aqueous layer was extracted six times with small portions of diethyl ether. The combined ethereal solutions were dried over sodium sulfate and subsequently concentrated in a water-pump vacuum. Distillation of the... [Pg.39]

Exp. 4) in 10 min with cooling at -30°C. After an additional 15 min 0.30 mol of a-chlororaethyl ethyl ether (note 2) was introduced in 10 min, while keeping the temperature between -20 and -30°C. A white precipitate of lithium chloride was formed. The cooling bath was then removed and the temperature was allowed to rise to +10°C. The mixture was hydrolyzed by shaking it with 200 ml of a solution of 30 g of ammonium chloride, to which 5 ml of aqueous ammonia had been added. [Pg.40]

A solution of 0.60 mol of ethyllithium (note 1) in about 400 ml of diethyl ether (see Chapter II, Exp. 1) was added in 30 min to a mixture of 0.25 mol of 1,4-diethoxy-2-butyne (see Chapter VIII-6, Exp. 8) and 100 ml of dry diethyl ether. The temperature of the reaction mixture was kept between -40 and -45°C. Fifteen minutes after the addition had been completed, 0.5 mol of methyl iodide was added at -40 C, then 100 ml of dry HMPT (for the purification see ref. 1) were added dropwise in 15 min while keeping the temperature at about -40°C. Thirty minutes after this addition the cooling bath was removed, the temperature was allowed to rise and stirring was continued for 3 h. The mixture was... [Pg.45]

A suspension of di1Ithiopropyne in THF and hexane was prepared from 0.25 mol of propyne (see Chapter II, Exp. 17). The suspension was cooled to -10°C and 0.22 mol of benzyl chloride was added dropwise in 30 min, while maintaining the temperature of the mixture at about -10°C. The cooling bath was then removed temporarily and the temperature was allowed to rise to After stirring for... [Pg.48]

To a solution of 0.50 tnol of ethyllithium in about 450 tnl of diethyl ether (see Chapter II, Exp. 1) was added 0.20 mol of 1-heptyne or butylallene (see Chapter VI, Exp. 1) with cooling below Q°C. After the addition the cooling bath was removed and the thermometer-gas outlet combination was replaced with a reflux condenser. The solution was heated under reflux for 6 h. The thermometer-gas outlet was again placed on the flask and the yellow suspension was cooled to -50°C. Trimethylchlorosilane (0.20 mol) was added dropwise in 10 min, while keeping the temperature between -40 and -35°C. After having kept the mixture for an additional 30 min at -30°C, it was poured into 200 ml of ice-water. The aqueous layer was extracted three times with small portions of diethyl ether. [Pg.53]

To a solution of ethylnagnesium bromide in 350 ml of THF, prepared from 0.5 mol of ethyl bromide (see Chapter 11, Exp. 6) was added in 10 min at 10°C 0.47 mol of 1-hexyne (Exp. 62) and at 0°C 0.47 mol of trimethylsilylacetylene (Exp. 31) or a solution of 0.60 mol of propyne in 70 ml of THF (cooled below -20°C). With trimethyl si lylacetylene an exothermic reaction started almost immediately, so that efficient cooling in a bath of dry-ice and acetone was necessary in order to keep the temperature between 10 and 15°C. When the exothermic reaction had subsided, the mixture was warmed to 20°C and was kept at that temperature for 1 h. With 1-hexyne the cooling bath was removed directly after the addition and the temperature was allowed to rise to 40-45°C and was maintained at that level for 1 h. [Pg.71]

After the addition of the propyne the thermometer-gas outlet combination was replaced with a "cold finger" filled with dry-ice and acetone. The top of this reflux condenser was connected via a plastic tube with a cold trap (-75°C) containing 50 ml of dry THF. The cooling bath was removed and the conversion of propyne started... [Pg.71]

A mixture of 0.10 mol of freshly distilled 3-methyl-3-chloro-l-butyne (see Chapter VIII-3, Exp. 5) and 170 ml of dry diethyl ether was cooled to -100°C and 0.10 mol of butyllithium in about 70 ml of hexane was added at this temperature in 10 min. Five minutes later 0.10 mol of dimethyl disulfide was introduced within 1 min with cooling betv/een -100 and -90°C. The cooling bath vjas subsequently removed and the temperature was allowed to rise. Above -25°C the clear light--brown solution became turbid and later a white precipitate was formed. When the temperature had reached lO C, the reaction mixture was hydrolyzed by addition of 200 ml of water. The organic layer and one ethereal extract were dried over potassium carbonate and subsequently concentrated in a water-pump vacuum (bath... [Pg.75]

A solution of 0.21 mol of butyllithium in about 140 ml of hexane (note 1) was cooled below -40°C and 90 ml of dry THF ivere run in. Subsequently a cold (< -20 C) solution of 0.25 nol of propyne in 20 ml of dry THF was added with cooling below -20°C and a white precipitate was formed. A solution of 0.10 mol of anhydrous (note 2) lithium bromide in 30 ml of THF was added, followed by 0.20 mol of freshly distilled cyclopentanone or cyclohexanone, all at -30°C. The precipitate had disappeared almost completely after 20 min. The cooling bath was then removed and when the temperature had reached 0°C, the mixture was hydrolyzed by addition of 100 ml of a solution of 20 g of NHi,Cl in water. After shaking and separation of the layers four extractions with diethyl ether were carried out. The extracts were dried over magnesium sulfate and the solvents removed by evaporation in a water--pump vacuum. Careful distillation of the remaining liquids afforded the following... [Pg.75]

Epichlorohydrin (1 mol) was added dropwise over a period of 1.5 h to a solution of 2.2 mol of sodium acetylide in 1.5 1 of liquid ammonia. During, as well as for a period of 1.5 h after, the addition the temperature of the mixture was kept at about -45°C. The cooling bath was removed after this period and the mixture was agitated vigorously for another 3 h. The thermometer and vent were removed, and 75 g of powdered ammonium chloride v/ere added in 2-g portions with vigorous stirring. The atimonia was allowed to evaporate. [Pg.78]


See other pages where Cooling bath is mentioned: [Pg.61]    [Pg.80]    [Pg.256]    [Pg.372]    [Pg.897]    [Pg.898]    [Pg.899]    [Pg.13]    [Pg.15]    [Pg.16]    [Pg.17]    [Pg.25]    [Pg.32]    [Pg.33]    [Pg.34]    [Pg.37]    [Pg.38]    [Pg.41]    [Pg.42]    [Pg.48]    [Pg.54]    [Pg.54]    [Pg.57]    [Pg.59]    [Pg.61]    [Pg.63]    [Pg.65]    [Pg.68]    [Pg.69]    [Pg.69]    [Pg.72]    [Pg.74]    [Pg.79]   
See also in sourсe #XX -- [ Pg.61 ]

See also in sourсe #XX -- [ Pg.38 ]

See also in sourсe #XX -- [ Pg.170 ]

See also in sourсe #XX -- [ Pg.61 ]

See also in sourсe #XX -- [ Pg.36 ]

See also in sourсe #XX -- [ Pg.36 ]

See also in sourсe #XX -- [ Pg.80 ]

See also in sourсe #XX -- [ Pg.9 ]

See also in sourсe #XX -- [ Pg.214 , Pg.215 ]

See also in sourсe #XX -- [ Pg.9 ]

See also in sourсe #XX -- [ Pg.61 ]

See also in sourсe #XX -- [ Pg.17 ]

See also in sourсe #XX -- [ Pg.9 ]

See also in sourсe #XX -- [ Pg.61 ]

See also in sourсe #XX -- [ Pg.18 ]

See also in sourсe #XX -- [ Pg.59 , Pg.109 , Pg.128 , Pg.129 ]




SEARCH



Cooling bath, Dry Ice and ethylene

Cooling bath, Dry Ice and ethylene glycol

Cooling bath, Dry Ice and ethylene glycol monomethyl ether

Cooling baths Table)

Cooling slush baths

Heat-bath algorithmic cooling

Heating/cooling methods cold baths

Heating/cooling methods sand bath

Heating/cooling methods steam baths

Heating/cooling methods water bath

Low-temperature cooling bath

© 2024 chempedia.info