Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Optical chemometrics

The demands on analytical instruments today are greater than ever before due to more challenging limits of sensitivity, smaller sample sizes, a wider range of applications and the growing list of new compounds that must be detected. It is fortunate, therefore, that modern instruments are improving all the time due to the availability of new technologies supporting their development. These include fibre optics, chemometrics, lasers, smaller components and more powerful computers. [Pg.5]

For many applications, quantitative band shape analysis is difficult to apply. Bands may be numerous or may overlap, the optical transmission properties of the film or host matrix may distort features, and features may be indistinct. If one can prepare samples of known properties and collect the FTIR spectra, then it is possible to produce a calibration matrix that can be used to assist in predicting these properties in unknown samples. Statistical, chemometric techniques, such as PLS (partial least-squares) and PCR (principle components of regression), may be applied to this matrix. Chemometric methods permit much larger segments of the spectra to be comprehended in developing an analysis model than is usually the case for simple band shape analyses. [Pg.422]

COlfen H (2007) Bio-inspired Mineralization Using Hydrophilic Polymers. 271 1-77 Collin J-P, Heitz V, Sauvage J-P (2005) Transition-Metal-Complexed Catenanes and Rotax-anes in Motion Towards Molecular Machines. 262 29-62 Collins BE, Wright AT, Anslyn EV (2007) Combining Molecular Recognition, Optical Detection, and Chemometric Analysis. 277 181-218 Collyer SD, see Davis F (2005) 255 97-124 Commeyras A, see Pascal R (2005) 259 69-122 Coquerel G (2007) Preferential Crystallization. 269 1-51 Correia JDG, see Santos I (2005) 252 45-84 Costanzo G, see Saladino R (2005) 259 29-68 Cotarca L, see Zonta C (2007) 275 131-161 Credi A, see Balzani V (2005) 262 1-27 Crestini C, see Saladino R (2005) 259 29-68... [Pg.257]

Topics which will be presented in this chapter include the hardware, software, automation, valve and column configurations, and integration used in comprehensive 2DLC. Aspects of the 2DLC experiment in conjunction with multichannel detectors such as UV diode array optical detectors and mass spectrometers are discussed along with the handling of the data, which is expected to expand in scope in the future as chemometric methods are more widely used for data analysis. [Pg.97]

Since the quality of a sensor and its application depends on all components of the sensor system, optical transduction, sensitive layers and chemometrics will be discussed in more detail in dependence on the different approaches. In the final chapter, quite a few applications will demonstrate the feasibility and the quality of such bio or chemosensors. Since miniaturisation and parallelisation are further essential topics in these applications, these approaches will be included. [Pg.218]

The skills needed to master NIR are physics, statistics, chemometrics, and optics. [Pg.171]

Because NIR was initially used for food and agriculture products, it has evolved as a technique for complex matrices. Many types of hardware have become available for NIR work interference filters, gratings, interferometers, diode arrays, and acousto-optic tunable filters. And, as it was originally developed for complex mixtures, chemometrics has been an integral part of any NIR analysis for the last few decades. NIR practitioners are quite comfortable with multivariate equations and development of equations for complex matrices. [Pg.391]

The use of ultraviolet (UV) spectroscopy for on-line analysis is a relatively recent development. Previously, on-line analysis in the UV-visible (UV-vis) region of the electromagnetic spectrum was limited to visible light applications such as color measurement, or chemical concentration measurements made with filter photometers. Three advances of the past two decades have propelled UV spectroscopy into the realm of on-line measurement and opened up a variety of new applications for both on-line UV and visible spectroscopy. These advances are high-quality UV-grade optical fiber, sensitive and affordable array detectors, and chemometrics. [Pg.81]

In the worse case, where either sample temperature, pressure or reactor integrity issues make it impossible to do otherwise, it may be necessary to consider a direct in situ fiber-optic transmission or diffuse reflectance probe. However, this should be considered the position of last resort. Probe retraction devices are expensive, and an in situ probe is both vulnerable to fouling and allows for no effective sample temperature control. Having said that, the process chemical applications that normally require this configuration often have rather simple chemometric modeling development requirements, and the configuration has been used with success. [Pg.139]

These optical probes are the most universally applicable in situ devices for on-line biomass monitoring up to now [15,16]. Konstaninov et al. [17] tested several absorbance and scattering sensors for real-time biomass concentration monitoring in mammalian cell cultivation processes and Hatch and Veilleux [18] compared optical density probes with oxygen uptake rates, packed cell volume, and off-line cell mass monitoring in commercial fed-batch fermentations of Saccharomyces cerevisiae [19]. In order to minimize influencing effects, special chemometric data treatment is necessary [20]. [Pg.22]

The industrial movement has been bolstered by two decades of advances in materials science, electronics, and chemometrics. Since the inception of CPAC, the pace of innovation in sensors, instrumentation, and analytics has quickened dramatically. The development of more robust, sensitive photodetector materials, microelectromechanical systems (MEMSs), and fiber optics and the perpetual advancement of computing power (as predicted by Moore s law) have both increased the performance and reduced the cost of . As a result, is now a critical part of routine operations within the realm of industrial chemistry. Many general reviews on the subject of (and PAT) have been published [6—10]. A series of literature reviews on the subject of have been published regularly in Analytical Chemistry. [Pg.315]

The first review [11] listed manuscripts published between 1987 and 1992, covering seven specific topics (general , chromatography, optical spectroscopy, fiber optics, mass spectrometry, chemometrics, and flow injection analysis), along with a section on needs for the future of in all, the first review included 507 references. Subsequent reviews were published in 1995 [12], 1999 [13], 2001 [14], 2003 [15], and 2005 [16]. The review series is an essential resource for scientists seeking information on specific methods in total, 2650 references covering more than 16 topics were catalogued by the authors. [Pg.315]

The aim of this chapter is, therefore, to introduce briefly the most common quantitative atomic techniques based on both optical and mass spectrometric detection. The main emphasis will be given to conceptual explanations in order to stress the advantages and disadvantages of each technique, the increase in the complexity of the data they generate and how this can be addressed. References to chemometric tools presented in the following chapters will be given. [Pg.3]

Inductively coupled plasma (ICP) needs careful extraction of the relevant information to obtain satisfactory models and several chemometric studies were found. Indeed, many ICP spectroscopists have applied multivariate regression and other multivariate methods to a number of problems. An excellent review has recently been published on chemometric modelling and applications of inductively coupled plasma optical emission spectrometry (ICP-OES) [79]. [Pg.234]

Inductively Coupled and Microwave Induced Plasma Sources for Mass Spectrometry 4 Industrial Analysis with Vibrational Spectroscopy 5 Ionization Methods in Organic Mass Spectrometry 6 Quantitative Millimetre Wavelength Spectrometry 7 Glow Discharge Optical Emission Spectroscopy A Practical Guide 8 Chemometrics in Analytical Spectroscopy, 2nd Edition 9 Raman Spectroscopy in Archaeology and Art History 10 Basic Chemometric Techniques in Atomic Spectroscopy... [Pg.321]

Spectrophotometry, 42 Absorbance, 42 Infrared, 44 Luminescence, 45 Raman, 48 Fiber Optics, 50 Refractive Index, 52 Piezoelectric Mass Sensors, 53 New Chemistry, 54 Immunochemistry, 54 Polymers and New Materials, 56 Recognition Chemistry, 57 Chromatography and Electrophoresis, 61 Flow Injection Analysis and Continuous Flow Analysis, 63 Robotics, 65 Chemometrics, 68 Communications, 70... [Pg.10]

Chemometrics - [CPIEMOMETRICS] (Vol5) - [ANALYTICALMETHODS - TRENDS] (Vol 2) -use m optical spectroscopy [SPECTROSCOPY, OPTICAL] (Vol 22)... [Pg.191]

Frequently, however, the lack of specificity in an analytical technique can be compensated for with sophisticated data processing, as described in the chemometrics chapter of this text (Chapter 8). Quinn and associates provide a demonstration of this approach, using fiber-optic UV-vis spectroscopy in combination with chemometrics to provide realtime determination of reactant and product concentrations.23 Automatic window factor analysis was used to evaluate the spectra. This technique was able to detect evidence of a reactive intermediate that was not discernable by off-line HPLC, and control charting of residuals was shown to be diagnostic of process upsets. Similarly, fiber-optic NIR was demonstrated by some of the same authors to predict reaction endpoint with suitable precision using a single PLS factor.24... [Pg.335]

Quinn, A.C. Gemperline, P.J. Baker, B. etal., Fiber-optic UV/visible composition monitoring for process control of batch reactions Chemometrics Intell. Lab. Syst. 1999, 451, 199-214. [Pg.357]


See other pages where Optical chemometrics is mentioned: [Pg.315]    [Pg.32]    [Pg.620]    [Pg.738]    [Pg.551]    [Pg.96]    [Pg.193]    [Pg.217]    [Pg.14]    [Pg.96]    [Pg.101]    [Pg.341]    [Pg.506]    [Pg.533]    [Pg.13]    [Pg.361]    [Pg.237]    [Pg.26]    [Pg.38]    [Pg.187]    [Pg.218]    [Pg.439]    [Pg.3]    [Pg.6]    [Pg.79]    [Pg.350]    [Pg.92]    [Pg.283]   
See also in sourсe #XX -- [ Pg.47 ]




SEARCH



Chemometric

Chemometrics

© 2024 chempedia.info