Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Olefins and paraffins

Each olefin is more soluble than the paraffin of the same chain length, but the solubiHty of both species declines as chain length increases. Thus, in a broa d-boiling mixture, solubiHties of paraffins and olefins overlap and separation becomes impossible. In contrast, the relative adsorption of olefins and paraffins from the Hquid phase on the adsorbent used commercially for this operation is shown in Figure 2. Not only is there selectivity between an olefin and paraffin of the same chain length, but also chain length has Httie effect on selectivity. Consequentiy, the complete separation of olefins from paraffins becomes possible. [Pg.291]

Fischer-Tropsch Process. The Hterature on the hydrogenation of carbon monoxide dates back to 1902 when the synthesis of methane from synthesis gas over a nickel catalyst was reported (17). In 1923, F. Fischer and H. Tropsch reported the formation of a mixture of organic compounds they called synthol by reaction of synthesis gas over alkalized iron turnings at 10—15 MPa (99—150 atm) and 400—450°C (18). This mixture contained mostly oxygenated compounds, but also contained a small amount of alkanes and alkenes. Further study of the reaction at 0.7 MPa (6.9 atm) revealed that low pressure favored olefinic and paraffinic hydrocarbons and minimized oxygenates, but at this pressure the reaction rate was very low. Because of their pioneering work on catalytic hydrocarbon synthesis, this class of reactions became known as the Fischer-Tropsch (FT) synthesis. [Pg.164]

Acetylene is used primarily as a raw material for the synthesis of a variety of organic chemicals (see AcETYLENE-DERiVED CHEMICALS). In the United States, this accounts for about 80% of acetylene usage and most of the remainder is used for metal welding or cutting. The chemical markets for acetylene are shrinking as ways are found to substitute lower cost olefins and paraffins for the acetylene, with some products now completely derived from olefinic starting materials. Metalworking appHcations, however, have held up better than chemical uses. [Pg.393]

Hydrogen atoms ate thought to play a principal role in the mechanistic steps of many reactions, including hydrocarbon thermolysis (119). Some reactions of atomic hydrogen with olefins and paraffins ate the following (120—122) ... [Pg.417]

Significant quantities of Cj and C, acetylenes are produced in cracking. They can be converted to olefins and paraffins. For the production of high purity ethylene and propylene, the contained Cj and C3 acetylenes and dienes are catalytically hydrogenated leaving only parts per million of acetylenes in the products. Careful operation is required to selectively hydrogenate the small concentrations of acetylenes only, and not downgrade too much of the wanted olefin products to saturates. [Pg.110]

We have explored rare earth oxide-modified amorphous silica-aluminas as "permanent" intermediate strength acids used as supports for bifunctional catalysts. The addition of well dispersed weakly basic rare earth oxides "titrates" the stronger acid sites of amorphous silica-alumina and lowers the acid strength to the level shown by halided aluminas. Physical and chemical probes, as well as model olefin and paraffin isomerization reactions show that acid strength can be adjusted close to that of chlorided and fluorided aluminas. Metal activity is inhibited relative to halided alumina catalysts, which limits the direct metal-catalyzed dehydrocyclization reactions during paraffin reforming but does not interfere with hydroisomerization reactions. [Pg.563]

It appears like a miracle how aliphatic chains (mainly olefins and paraffins) are formed from a mixture of CO and H2. But miracle means only high complexity of unknown order (Figure 9.1). Problems in FT synthesis research include the visualization of a multistep reaction scheme where adsorbed intermediates are not easily identified. Kinetic constants of the elemental reactions are not directly accessible. Models and assumptions are needed. The steady state develops slowly. The true catalyst is assembled under reaction conditions. Difficulties with product analysis result from the presence of hundreds of compounds (gases, liquids, solids) and from changes of composition with time. [Pg.166]

By extending the FT model to the formation of two kinds of products—olefins and paraffins—and including secondary olefin reactions, the kinetic schemes shown in Figure 9.15 are obtained. In parallel primary reactions (from the growth sites), paraffins and alpha-olefins are desorbed—by irreversible associative desorption (the paraffins) and by dissociative desorption (the olefins) (upper scheme in Figure 9.15). [Pg.175]

Mixed C4 olefins (primarily iC4) are isolated from a mixed C olefin and paraffin stream. Two different liquid adsorption high-purity C olefin processes exist the C4 Olex process for producing isobutylene (iCf ) and the Sorbutene process for producing butene-1. Isobutylene has been used in alcohol synthesis and the production of methyl tert-butyl ether (MTBE) and isooctane, both of which improve octane of gasoHne. Commercial 1-butene is used in the manufacture of both hnear low-density polyethylene (LLDPE) and high-density polyethylene (HDPE)., polypropylene, polybutene, butylene oxide and the C4 solvents secondary butyl alcohol (SBA) and methyl ethyl ketone (MEK). While the C4 Olex process has been commercially demonstrated, the Sorbutene process has only been demonstrated on a pilot scale. [Pg.266]

Light hydrocarbons (Ci to C4) and aromatics (mainly Ce to Ce) were produced by ZSM-5 due to the the conversion of olefins and paraffins. Thus,these results provide evidence for cracking of olefins, paraffins and cyclization of olefins by ZSM-5 at 500 C. The steam deactivated ZSM-5 catalyst exhibited reduced olefin conversion and negligible paraffin conversion activity. [Pg.44]

We now need to relate the activity of ZSM-5 to the octane boost achievable commercially. As discussed previously, the octane boost at any given ZSM-5 activity depends on the base octane, which is a characteristic of the concentration of low octane olefins and paraffins in the gasoline. Figure 1 illustrates the relationship between octane boost and activity at several different base octanes. As can be seen from the curves, as the gasoline base octane increases, more ZSM-5 activity is required to achieve a given octane increase. [Pg.75]

Mono-olefins (un) react with solid copper(I) halides to form unstable complexes of the type [CuX(un)] (X = Cl, Br), which dissociate into their constituents above 0° (67, 138). Dienes (e.g., butadiene, isoprene, pipery-lene, bicyclo[2,2,l]hepta-2,5-diene, and cyclopolyolefins) form more stable complexes of the type [Cu2X2(diene)J (1,63, 67,138,192), in which a copper atom is attached to each C C bond industrial processes to separate dienes from mono-olefins and paraffins are based on this difference in stability (8). Complexes of the type [Cu(un)]+, [CuCl(un)], and [CuCl2(un)] have been shown to exist in dilute acid solution (15, 67, 138). [Pg.101]

A Comparison of the Environmental Performance November 2006 of Olefin and Paraffin Synthetic Base Fluids (SBF). American Chemistry Council, Washington, DC, 2006. [Pg.325]

Paraffins produce mostly C6 and C6 liquid product, principally olefins and paraffins. Based on feed reacted, n-Cu gave 49, n-Ci6 gave 44, and n-C24 gave 57 weight % liquid product (20), under conditions given in Table I. [Pg.13]

Olefin Separation. U.O.P. s Olex Process. U.O.P. s other hydrocarbon separation process developed recently—i.e., the Olex process—is used to separate olefins from a feedstock containing olefins and paraffins. The zeolite adsorbent used, according to patent literature 29, 30), is a synthetic faujasite with 1-40 wt % of at least one cation selected from groups I A, IIA, IB, and IIB. The Olex process is also believed to use the same simulated moving-bed operation in liquid phase as U.O.P. s other hydrocarbon separation processes—i.e., the Molex and Parex processes. [Pg.314]

Concurrently with the work on carbon dioxide and hydrogen sulfide at General Electric, Steigelmann and Hughes [27] and others at Standard Oil were developing facilitated transport membranes for olefin separations. The principal target was the separation of ethylene/ethane and propylene/propane mixtures. Both separations are performed on a massive scale by distillation, but the relative volatilities of the olefins and paraffins are so small that large columns with up to 200 trays are required. In the facilitated transport process, concentrated aqueous silver salt solutions, held in microporous cellulose acetate flat sheets or hollow fibers, were used as the carrier. [Pg.455]

Carbon dioxide removal by reactive absorption in amine solutions is also applied on the commercial scale, for instance, in the treatment of flue gas (see later in this chapter). Another possible application field of the technique is gas desulfurization, in which H2S is removed and converted to sulfur by means of reactive absorption. Aqueous solutions of ferric chelates (160-162) as well as tetramethylene sulfone, pyridine, quinoline, and polyglycol ether solutions of S02 (163,164) have been proposed as solvents. Reactive absorption can also be used for NOx reduction and removal from flue or exhaust gases (165,166). The separation of light olefins and paraffins by means of a reversible chemical com-plexation of olefins with Ag(I) or Cu(I) compounds in aqueous and nonaqueous solutions is another very interesting example of reactive absorption, one that could possibly replace the conventional cryogenic distillation technology (167). [Pg.286]

The PONA composition of the gasoline as a percent of fresh feed (Table V) shows that the ZSM-5 is acting primarily on the C7+ olefins and paraffins in the gasoline boiling range. [Pg.52]

With 1% 1-pentene in feed, and using the 525 S/A additive, there was an increase in C5 branched olefins and paraffins, as well as an increase in C5 normal olefins and paraffins. Other carbon numbers remained unaffected (Table I). [Pg.105]

Tanaka, K., Taguchi, A., Hao, J., Kita, H. and Okamoto, K. (1996) Permeation and separation properties of polyimide membranes to olefins and paraffins. Journal of Membrane Science, 121, 197. [Pg.163]

Aromatics, olefins, and paraffins Subtractive columns and FID Column preparation fussy... [Pg.349]

The process is designed to utilize olefinic feedstocks from steam crackers, refinery FCC and coker units, and MTO units, with typical C4 to C8 olefin and paraffin compositions. The catalyst exhibits little sensitivity to common impurities such as dienes, oxygenates, sulfur compounds and nitrogen compounds. [Pg.182]

The fluidized reactor system is similar to that of a refineiy FCC unit and consists of riser reactor, regenerator vessel, air compression, catalyst handling, flue-gas handling and feed and effluent heat recovery. Using this reactor system with continuous catalyst regeneration allows higher operating temperatures than with fixed-bed reactors so that paraffins, as well as olefins, are converted. The conversion of paraffins allows substantial quantities of paraffins in the feedstream and recycle of unconverted feed without need to separate olefins and paraffins. [Pg.103]


See other pages where Olefins and paraffins is mentioned: [Pg.366]    [Pg.985]    [Pg.311]    [Pg.66]    [Pg.11]    [Pg.117]    [Pg.60]    [Pg.267]    [Pg.268]    [Pg.556]    [Pg.68]    [Pg.26]    [Pg.22]    [Pg.128]    [Pg.423]    [Pg.459]    [Pg.6]    [Pg.163]    [Pg.193]    [Pg.5]    [Pg.127]    [Pg.58]    [Pg.305]    [Pg.360]    [Pg.286]    [Pg.56]    [Pg.291]   
See also in sourсe #XX -- [ Pg.308 ]




SEARCH



CHLOROWAX Liquid Chlorinated Paraffins, Waxes and Alpha Olefins

Olefins paraffins

Paraffin, olefin, naphthene, and aromatic

Separation of olefins and paraffins

© 2024 chempedia.info