Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nylon various properties

The first nanocomposite prepared by Toyota Group of Japan was based on nylon 6. In situ polymerization of caprolactum inside the gallery of 5% MMT resulted in the first nylon 6-clay nanocomposite. Besides nylon, polypropylene (PP) is probably the most thoroughly investigated system. Excepting the study of the various properties, theoretical aspects and simulations have also... [Pg.45]

Effect of Heat-setting on Various Properties of Synthetic Fibres 8.7.1 Structural changes of polyester and nylon... [Pg.272]

There have been substantial efforts to improve the flame resistance of nylons. Various halogen compounds (synergized by zinc oxide or zinc borate) and phosphorus compounds have been used (see the section on Flame Retardation in Chapter 1 of Plastics Fundamentals, Properties, and Testing). They are, however, dark in color. [Pg.94]

In recent years, research on polymer-metal nanoeomposites and their properties has attracted considerable attention due to their potential applications in catalysts, electronics and non-linear optics. Polymer-metal composites consist of polymer and metal particles on the surface or interior (core) of the polymer matrix." They exhibit various properties depending on the type of metal and polymer, especially the former. These composites not only combine the advantageous properties of polymers and metals but also exhibit many new characteristics that single-phase materials do not have. Precious metals such as silver and gold have been studied most extensively among polymer-metal nanoeomposites." Many polymer-metal nanoeomposites have been prepared in one step with y-irradiation in an aqueous solution. Choi et al. reported on polyester-silver and nylon-silver nanoeomposites prepared by the dispersion of silver nanoparticles, which were prepared by y-irradiation, on to polyester and nylon during condensation polymerization to obtain antibacterial fibers." It was found that the silver nanoparticles aggregated in the polyester matrix, whereas the silver nanoparticles dramatically dispersed in the nylon matrix. [Pg.172]

Commercial production of PVA fiber was thus started in Japan, at as early a period as that for nylon. However, compared with various other synthetic fibers which appeared after that period, the properties of which have continuously been improved, PVA fiber is not very well suited for clothing and interior uses because of its characteristic properties. The fiber, however, is widely used in the world because of unique features such as high affinity for water due to the —OH groups present in PVA, excellent mechanical properties because of high crystallinity, and high resistance to chemicals including alkah and natural conditions. [Pg.337]

Other reinforcements that may be used in the substrate layers of decorative laminates and throughout the stmcture of industrial laminates are woven fabrics of glass or canvas and nonwoven fabrics of various polymeric monofilaments such as polyester, nylon, or carbon fibers. Woven and nonwoven fabrics tend to be much stronger than paper and have much more uniform strength throughout the x—y plane. They greatly enhance properties of laminates such as impact and tear strength. [Pg.532]

To accommodate the various uses in 100% form and in blends, the tenacities and elongations of the nylon staple offerings range from 0.3 to 0.6 N /tex (3—7 g/den) and from 50 to 100% elongation. Most other fiber properties of nylon staple differ tittle from those of the continuous filament property characteristics of nylon-6 and nylon-6,6 are similar (see Polyamides, general). [Pg.250]

Some commercial durable antistatic finishes have been Hsted in Table 3 (98). Early patents suggest that amino resins (qv) can impart both antisHp and antistatic properties to nylon, acryUc, and polyester fabrics. CycHc polyurethanes, water-soluble amine salts cross-linked with styrene, and water-soluble amine salts of sulfonated polystyrene have been claimed to confer durable antistatic protection. Later patents included dibydroxyethyl sulfone [2580-77-0] hydroxyalkylated cellulose or starch, poly(vinyl alcohol) [9002-86-2] cross-linked with dimethylolethylene urea, chlorotria2ine derivatives, and epoxy-based products. Other patents claim the use of various acryUc polymers and copolymers. Essentially, durable antistats are polyelectrolytes, and the majority of usehil products involve variations of cross-linked polyamines containing polyethoxy segments (92,99—101). [Pg.294]

The acetal resins show superior creep resistance to the nylons but are inferior in this respect, to the polycarbonates. It is to be noted, however, that limitations in the load-bearing properties of the polycarbonates restrict their use in engineering applications (see Chapter 20). Another property of importance in engineering is abrasion resistance—a property that is extremely difficult to assess. Results obtained from various tests indicate that the acetal polymers are superior to most plastics and die cast aluminium, but inferior to nylon 66 (see also Section 19.3.6 and Chapter 18). [Pg.540]

PP is probably the most thoroughly investigated system in the nanocomposite field next to nylon [127-132]. In most of the cases isotactic/syndiotactic-PP-based nanocomposites have been prepared with various clays using maleic anhydride as the compatibilizer. Sometimes maleic anhydride-grafted PP has also been used [127]. Nanocomposites have shown dramatic improvement over the pristine polymer in mechanical, rheological, thermal, and barrier properties [132-138]. Crystallization [139,140], thermodynamic behavior, and kinetic study [141] have also been done. [Pg.46]

TPEs prepared from rubber-plastic blends usually show poor high-temperature properties. This problem could be solved by using high-melting plastics like polyamides and polyesters. But, often they impart processing problems to the blends. Jha and Bhowmick [49] and Jha et al. [50] have reported the development and properties of novel heat and oil-resistant TPEs from reactive blends of nylon-6 and acrylate rubber (ACM). The properties of various thermoplastic compositions are shown in Table 5.4. In this kind of blend, the plastic phase forms the continuous phase, whereas... [Pg.110]

To date, the melt state linear dynamic oscillatory shear properties of various kinds of nanocomposites have been examined for a wide range of polymer matrices including Nylon 6 with various matrix molecular weights [34], polystyrene (PS) [35], PS-polyisoprene (PI) block copolymers [36,37], poly(e-caprolactone) (PCL) [38], PLA [39,40], PBS [30,41], and so on [42],... [Pg.285]

The model PBZT/ABPBI molecular composite system is limited since the rod and the matrix do not possess glass transition temperatures for subsequent post form consolidation. In an effort to improve the processability for molecular composites, thermoplastics were used as the host matrix. Processing from acidic solvents requires the thermoplastic host to be soluble and stable in meth-anesulfonic add. Thermoplastic matrices were investigated including both amorphous and semicrystalline nylons [71,72], polyphenylquinoxaline (PPQ) [73] and polyetheretherketone (PEEK) [74], Table 5 shows the mechanical properties obtained for various processed PBZT thermoplastic molecular composite systems. As an example, the PBZT/Nylon systems showed 50-300% improvement over uniaxially aligned chopped fiber composite of comparable compositions. However, the thermally-induced phase separation during consol-... [Pg.284]


See other pages where Nylon various properties is mentioned: [Pg.49]    [Pg.152]    [Pg.127]    [Pg.276]    [Pg.233]    [Pg.253]    [Pg.299]    [Pg.531]    [Pg.82]    [Pg.155]    [Pg.36]    [Pg.45]    [Pg.275]    [Pg.129]    [Pg.8]    [Pg.71]    [Pg.74]    [Pg.12]    [Pg.148]    [Pg.372]    [Pg.388]    [Pg.388]    [Pg.431]    [Pg.87]    [Pg.3]    [Pg.259]    [Pg.453]    [Pg.136]    [Pg.233]    [Pg.253]    [Pg.299]    [Pg.626]    [Pg.63]    [Pg.39]    [Pg.45]   
See also in sourсe #XX -- [ Pg.168 , Pg.270 ]




SEARCH



Nylon properties

© 2024 chempedia.info