Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nuclear power reactors fuel rods

Spent Fuel Treatment. Spent fuel assembhes from nuclear power reactors are highly radioactive because they contain fission products. Relatively few options are available for the treatment of spent fuel. The tubes and the fuel matrix provide considerable containment against attack and release of nucHdes. To minimi2e the volume of spent fuel that must be shipped or disposed of, consoHdation of rods in assembhes into compact bundles of fuel rods has been successfully tested. Alternatively, intact assembhes can be encased in metal containers. [Pg.229]

During the operation of nuclear power reactors, which are fuelled with ceramic UO2 fuel rods, the fission of the nuclei leads to die formation of fission products which are isotopes of elements in all of tire Groups of the Periodic Table. The major fission products, present in 1-10% abundance, fall into five groups divided according to the chemical interaction of each product with the fuel ... [Pg.249]

Because the isotope uranium-235 is fissionable, meaning that it produces free neutrons that cause other atoms to split, it generates enough free neutrons to make it unstable. When the unstable U-235 reaches a critical mass of a few pounds, it produces a self-sustaining fission chain reaction that results in a rapid explosion with tremendous energy and becomes a nuclear (atomic) bomb. The first nuclear bombs were made of uranium and plutonium. Today, both of these fuels are used in reactors to produce electrical power. Moderators (control rods) in nuclear power reactors absorb some of the neutrons, which prevents the mass... [Pg.313]

Nuclear power reactors have the following safety issues nuclear waste, plutonium buildup and radioactivity. Nuclear waste from the reactor fuel consists of uranium that has been formed into a usable metal alloy and provided as small pellets, rods, or plates. The fuel is encapsulated with a metal cladding, such as zircaloy, which adds mechanical strength and also prevents radioactive contamination. [Pg.235]

Zirconium metal is used to make containment vessels for uranium-235 fuel rods for nuclear power reactors, because of its low absorption of the neutrons needed in the nuclear fission of uranium-235. [Pg.911]

The turbine and generator components of a nuclear power plant have exact counterparts in power plants fueled by fossil fuels. The uniqueness of the nuclear power plant lies in its core. The core is a nuclear reactor where fission takes place under conditions that keep the reactor operating just below the critical level. The core contains three parts fuel rods, moderators, and control rods. These components act on the flow of neutrons within the core, as shown in Figure 22-13. The fate of neutrons must be controlled carefully. Fission must be sustained at a steady rate that produces sufficient energy to mn a generator, but the rate must not be allowed to increase and destroy the reactor. [Pg.1585]

Nuclear and magneto-hydrodynamic electric power generation systems have been produced on a scale which could lead to industrial production, but to-date technical problems, mainly connected with corrosion of the containing materials, has hampered full-scale development. In the case of nuclear power, the proposed fast reactor, which uses fast neutron fission in a small nuclear fuel element, by comparison with fuel rods in thermal neutron reactors, requires a more rapid heat removal than is possible by water cooling, and a liquid sodium-potassium alloy has been used in the development of a near-industrial generator. The fuel container is a vanadium sheath with a niobium outer cladding, since this has a low fast neutron capture cross-section and a low rate of corrosion by the liquid metal coolant. The liquid metal coolant is transported from the fuel to the turbine generating the electric power in stainless steel... [Pg.300]

Traditional nuclear power involves using the heat generated in a controlled fission reaction to generate electricity. A schematic of a nuclear reactor is shown in Figure 17.7. The reactor core consists of a heavy-walled reaction vessel several meters thick that contains fuel elements consisting of zirconium rods containing enriched pellets of U-235 in the form of... [Pg.248]

Nuclear power plants use fuel rods with a life span of about three years. Each year, roughly one-third of spent fuel rods are removed and stored in cooling basins, either at the reactor site or elsewhere. Typical modern nuclear power plants discharge about 30 tons of the spent fuel per reactor per year. Comparatively little of Lite radioactive wastes, as is currently reliably known worldwide, has been processed for return to the fuel cycle. Actually, fuel reprocessing causes a net increase in the volume of radioactive wastes, but, as in the ease of military wastes, they are less hazardous in the long term. Nevertheless, the wastes from reprocessing also must be disposed of with great care. [Pg.1122]

If the rate of the chain reaction exceeds a certain level, the reactor will become too hot and begin to melt. Control rods—made from neutron-absorbing elements, such as boron or cadmium, and inserted between the fuel rods—help to control the number of available neutrons and the rate of nuclear reaction. All explosions in nuclear power plants have been chemical explosions, generally from overheating. [Pg.973]

Nuclear power plants are designed to prevent accidents such as meltdown by careful control of fuel-rod placement and positioning of control rods made of boron or other materials that have high affinity for neutrons. If the core of the reactor should become overheated, the fuel rods are... [Pg.97]

In terms of safety, two issues are regularly debated. First, the issue of nuclear waste and, second, concerns over potential terrorist attacks on nuclear power plants. The first objection may be overcome through the introduction of new types of power plants, such as the pebble-bed modular reactor.This type of reactor uses graphite balls flecked with tiny amounts of uranium, rather than conventional fuel rods. With the fuel encased in graphite and impermeable silicon carbide, the theory is that the waste should be relatively easy to dispose of.The terrorism fears are less easily addressed and may ultimately stall the construction of new plants in countries such as the U.S., where these worries are greatest. [Pg.5]

Safety features at a nuclear power plant include automatic shutdown of the fission process by insertion of control rods, emergency water cooling for the cote in case of pipeline breakage, and a concrete containment shell. It is impossible for a reactor to have a nuclear explosion because the fuel enrichment in a reactor is intentionally limited to about 3% uranium-235, while almost 100% pure uranium-235 is required for a bomb. The worst accident at a PWR would be a steam explosion, which could contaminate the inside of the containment shell. [Pg.584]

The source of energy in a nuclear reactor is a fission reaction in which neutrons collide with nuelei of uranium-235 or plutonium-239 (the fuel), causing them to split apart. The products of a fission reaction include not only energy but also new elements (known as fission products) and free neutrons. A constant and reliable flow of neutrons is insured in the reactor by a moderator, which slows down the speed of neutrons, and by control rods, which limit the number of neutrons available in the reactor and, hence, the rate at which fission can occur. In a nuclear weapon, the fission chain reaction, once triggered, proceeds at an exponentially increasing rate, resulting in an explosion in a nuclear reactor, it proceeds at a steady, controlled rate. Most commercial nuclear power plants are incapable of undergoing an explosive nuclear chain reaction, even should their safety systems fail this is not true of all research reactors (e.g., some breeder reactors). [Pg.594]

The fission within a nuclear reactor is started by a neutron-emitting source and is stopped by positioning the control rods to absorb virtually all of the neutrons produced in the reaction. The reactor core contains a reflector that acts to reflect neutrons back into the core where they will react with the fuel rods. A coolant, usually water, circulates through the reactor core to carry off the heat generated by the nuclear fission reaction. The hot coolant heats water that is used to power stream-driven turbines which produce electrical power. [Pg.824]

Most commercial nuclear power plants in the United States are light water reactors, moderated and cooled by ordinary water. Figure 26-12 is a schematic diagram of a light water reactor plant. The reactor core at the left replaces the furnace in which coal, oil, or natural gas is burned in a fossil fuel plant. Such a fission reactor consists of five main components (1) fuel, (2) moderator, (3) control rods, (4) cooling system, and (5) shielding. [Pg.1027]

The gas that you see coming from the towers of the Three Mile Island nuclear power plant in Pennsylvania is all water vapor. Few chemical pollutants are released during the normal operation of a nuclear plant. Both equipment failure and human error resulted in overheating of the reaction chamber and a partial meltdown of fuel rods at this power plant in 1979. As a result, the building surrounding the reactor became flooded with water contaminated with radioactive material, and radioactive gas was released into the atmosphere. ... [Pg.765]


See other pages where Nuclear power reactors fuel rods is mentioned: [Pg.336]    [Pg.879]    [Pg.429]    [Pg.969]    [Pg.394]    [Pg.105]    [Pg.243]    [Pg.1253]    [Pg.213]    [Pg.235]    [Pg.300]    [Pg.205]    [Pg.206]    [Pg.956]    [Pg.444]    [Pg.135]    [Pg.259]    [Pg.216]    [Pg.286]    [Pg.539]    [Pg.25]    [Pg.272]    [Pg.5265]    [Pg.270]    [Pg.445]    [Pg.217]    [Pg.584]    [Pg.232]    [Pg.824]    [Pg.1030]    [Pg.49]    [Pg.34]   


SEARCH



Nuclear power

Nuclear power reactors

Nuclear reactor fuel

Nuclear reactors

Power reactor fuels

Reactor fuel rod

© 2024 chempedia.info