Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel seawater

Nickel—Copper. In the soHd state, nickel and copper form a continuous soHd solution. The nickel-rich, nickel—copper alloys are characterized by a good compromise of strength and ductihty and are resistant to corrosion and stress corrosion ia many environments, ia particular water and seawater, nonoxidizing acids, neutral and alkaline salts, and alkaUes. These alloys are weldable and are characterized by elevated and high temperature mechanical properties for certain appHcations. The copper content ia these alloys also easure improved thermal coaductivity for heat exchange. MONEL alloy 400 is a typical nickel-rich, nickel—copper alloy ia which the nickel content is ca 66 wt %. MONEL alloy K-500 is essentially alloy 400 with small additions of aluminum and titanium. Aging of alloy K-500 results in very fine y -precipitates and increased strength (see also Copper alloys). [Pg.6]

Uses. Copper—nickel—iron alloys, UNS C 96200 (90 10 copper nickel) and UNS C 96400 (70 30 copper nickel), are used in corrosion-resistant marine (seawater) appHcations. UNS C 96400 is used for corrosion-resistant marine elbows, flanges, valves, and pumps. Leaded nickel—brass, UNS C 97300 (12% nickel-silver), is used for hardware fittings, valves, and statuary and ornamental castings. [Pg.251]

The stainless steels contain appreciable amounts of Cr, Ni, or both. The straight chrome steels, types 410, 416, and 430, contain about 12, 13, and 16 wt % Cr respectively. The chrome—nickel steels include type 301 (18 wt % Cr and 9 wt % Ni), type 304 (19 wt % Cr and 10 wt % Ni), and type 316 (19 wt % Cr and 12 wt % Ni). Additionally, type 316 contains 2—3 wt % Mo which gready improves resistance to crevice corrosion in seawater as well as general corrosion resistance. AH of the stainless steels offer exceptional improvement in atmospheric conditions. The corrosion resistance results from the formation of a passive film and, for this reason, these materials are susceptible to pitting corrosion and to crevice corrosion. For example, type 304 stainless has very good resistance to moving seawater but does pit in stagnant seawater. [Pg.282]

Good results are obtained with oxide-coated valve metals as anode materials. These electrically conducting ceramic coatings of p-conducting spinel-ferrite (e.g., cobalt, nickel and lithium ferrites) have very low consumption rates. Lithium ferrite has proved particularly effective because it possesses excellent adhesion on titanium and niobium [26]. In addition, doping the perovskite structure with monovalent lithium ions provides good electrical conductivity for anodic reactions. Anodes produced in this way are distributed under the trade name Lida [27]. The consumption rate in seawater is given as 10 g A ar and in fresh water is... [Pg.216]

Nickel is usually alloyed with elements including copper, chromium, molybdenum and then for strengthening and to improve corrosion resistance for specific applications. Nickel-copper alloys (and copper-nickel alloys see Section 53.5.4) are widely used for handling water. Pumps and valve bodies for fresh water, seawater and mildly acidic alkaline conditions are made from cast Ni-30% Cu type alloys. The wrought material is used for shafts and stems. In seawater contaminated with sulfide, these alloys are subject to pitting and corrosion fatigue. Ammonia contamination creates corrosion problems as for commercially pure nickel. [Pg.906]

The characteristics of the various metals commonly used for seawater systems, chiefly, nickel and titanium alloys, galvanised steel and to a lesser extent aluminium alloys and stainless steels, are fully described in their respective sections. Reference here will be confined to mentioning some of the advantages and limitations of clad and non-metallic piping. [Pg.74]

General corrosion damage was the cause of failure of an A1 alloy welded pipe assembly in an aircraft bowser which was attacked by a deicing-fluid — water mixture at small weld defects . Selective attack has been reported in welded cupro-nickel subjected to estuarine and seawater environments . It was the consequence of the combination of alloy element segregation in the weld metal and the action of sulphate reducing bacteria (SRB). Sulphide-coated Cu-enriched areas were cathodic relative to the adjacent Ni-rich areas where, in the latter, the sulphides were being continuously removed by the turbulence. Sulphite ions seemed to act as a mild inhibitor. [Pg.101]

Lead dioxide on graphite or titanium substrates has been utilised as an anode in the production of chlorate and hypochlorites and on nickel as an anode in lead-acid primary batteries Lead dioxide on a titanium substrate has also been tested for use in the cathodic protection of heat exchangers and in seawater may be operated at current densities up to lOOOAm" . However, this anode has not gained general acceptance as a cathodic protection anode for seawater applications, since platinised Ti anodes are generally preferred. [Pg.184]

Guide for crevice corrosion testing of iron base and nickel base stainless steels in seawater and other chloride-containing aqueous environments... [Pg.1102]

Nickel and Nickel Alloys Nickel is available in practically any mill form as well as in castings. It can be machined easily and joined by welding. Generally, oxidizing conditions favor corrosion, while reducing conditions retard attack. Neutral alkaline solutions, seawater, and mild atmospheric conditions do not affect nickel. The metal is widely used for... [Pg.32]

Samples were processed in clean rooms in the shore laboratory within 30 min of sampling. Results indicated (i) the feasibility of inter-calibrating using the enclosure approach (ii) the availability of chemical techniques of sufficient precision in the case of copper, nickel, lead, and cobalt for sampler intercomparison and storage tests and (iii) a problem in sub-sampling from the captured seawater in a sampler, and the difficulty of commonly used samplers to sample seawater in an uncontaminated way at the desired depth. [Pg.33]

Several ions (e.g., manganese, iron (II), iron (III), cobalt, nickel, copper, zinc, cadmium, lead, and uranyl) react with pyrocatechol violet, and to some extent are extracted together with aluminium. The interferences from these ions and other metal ions generally present in seawater could be eliminated by extraction with diethyldithiocarbamate as masking agent. With this agent most of the metal ions except aluminium were extracted into chloroform, and other metal ions did not react in the amounts commonly found in seawater. Levels of aluminium between 6 and 6.3 pg/1 were found in Pacific Ocean and Japan Sea samples by this method. [Pg.130]

The concentration of nickel in natural waters is so low that one or two enrichment steps are necessary before instrumental analysis. The most common method is graphite furnace atomic absorption after preconcentration by solvent extraction [122] or coprecipitation [518]. Even though this technique has been used successfully for the nickel analyses of seawater [519,520] it is vulnerable to contamination as a consequence of the several manipulation steps and of the many reagents used during preconcentration. [Pg.207]

Nickel has been determined spectrophotometrically in seawater in amounts down to 0.5 xg/l as the dimethylglyoxime complex [521,522], In one procedure [521] dimethylglyoxime is added to a 750 ml sample and the pH adjusted to 9 -10. The nickel complex is extracted into chloroform. After extraction into 1M hydrochloric acid, it is oxidised with aqueous bromine, adjusted to pH 10.4, and dimethylglyoxime reagent added. It is made up to 50 ml and the extinction of the nickel complex measured at 442 nm. There is no serious interference from iron, cobalt, copper, or zinc but manganese may cause low results. [Pg.207]

In another procedure [522] the sample of seawater (0.5-3 litres) is filtered through a membrane-filter (pore size 0.7 xm) which is then wet-ashed. The nickel is separated from the resulting solution by extraction as the dimethylglyoxime complex and is then determined by its catalysis of the reaction of Tiron and diphenylcarbazone with hydrogen peroxide, with spectrophotometric measurement at 413 nm. Cobalt is first separated as the 2-nitroso-1-naphthol complex, and is determined by its catalysis of the oxidation of alizarin by hydrogen peroxide at pH 12.4. Sensitivities are 0.8 xg/l (nickel) and 0.04 xg/l (cobalt). [Pg.207]

Rampon and Cavelier [523] used atomic absorption spectrometry to determine down to 0.5 xg/l nickel in seawater. Nickel is extracted into chloroform from seawater (500 ml) at pH 9-10, as its dimethylglyoxime complex. Several extractions and a final washing of the aqueous phase with carbon tetrachloride... [Pg.207]

Lee [524] described a method for the determination of nanogram or sub-nan ogram amounts of nickel in seawater. Dissolved nickel is reduced by sodium borohydride to its elemental form, which combines with carbon monoxide to form nickel carbonyl. The nickel carbonyl is stripped from solution by a helium-carbon monoxide mixed gas stream, collected in a liquid nitrogen trap, and atomised in a quartz tube burner of an atomic absorption spectrophotometer. The sensitivity of the method is 0.05 ng of nickel. The precision for 3 ng nickel is about 4%. No interference by other elements is encountered in this technique. [Pg.208]

Nishioka et al. [525] coprecipitated nickel from seawater with sodium di-ethyldithiocarbamate, filtered, and redissolved the precipitate with nitric acid followed by electrothermal atomic absorption spectrophotography determination of the nickel. The detection limit was 0.5 p,g/l and the relative standard deviation was 13.2% at the 2 ig/l level. [Pg.208]


See other pages where Nickel seawater is mentioned: [Pg.388]    [Pg.69]    [Pg.178]    [Pg.5]    [Pg.286]    [Pg.287]    [Pg.241]    [Pg.412]    [Pg.212]    [Pg.233]    [Pg.233]    [Pg.282]    [Pg.2449]    [Pg.2449]    [Pg.906]    [Pg.906]    [Pg.297]    [Pg.697]    [Pg.1322]    [Pg.64]    [Pg.74]    [Pg.179]    [Pg.786]    [Pg.1102]    [Pg.1456]    [Pg.285]    [Pg.35]    [Pg.155]    [Pg.156]    [Pg.166]    [Pg.186]    [Pg.192]    [Pg.208]   
See also in sourсe #XX -- [ Pg.374 ]




SEARCH



Copper nickel alloys flowing seawater

Nickel alloys in seawater

Nickel flowing seawater

Nickel seawater speciation

Nickel-chromium alloys flowing seawater

Nickel-chromium-molybdenum alloys seawater corrosion

Nickel-copper alloys, seawater corrosion

© 2024 chempedia.info