Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel metal, reactions

Ma.nufa.cture. Nickel carbonyl can be prepared by the direct combination of carbon monoxide and metallic nickel (77). The presence of sulfur, the surface area, and the surface activity of the nickel affect the formation of nickel carbonyl (78). The thermodynamics of formation and reaction are documented (79). Two commercial processes are used for large-scale production (80). An atmospheric method, whereby carbon monoxide is passed over nickel sulfide and freshly reduced nickel metal, is used in the United Kingdom to produce pure nickel carbonyl (81). The second method, used in Canada, involves high pressure CO in the formation of iron and nickel carbonyls the two are separated by distillation (81). Very high pressure CO is required for the formation of cobalt carbonyl and a method has been described where the mixed carbonyls are scmbbed with ammonia or an amine and the cobalt is extracted as the ammine carbonyl (82). A discontinued commercial process in the United States involved the reaction of carbon monoxide with nickel sulfate solution. [Pg.12]

The reaction takes place at low temperature (40-60 °C), without any solvent, in two (or more, up to four) well-mixed reactors in series. The pressure is sufficient to maintain the reactants in the liquid phase (no gas phase). Mixing and heat removal are ensured by an external circulation loop. The two components of the catalytic system are injected separately into this reaction loop with precise flow control. The residence time could be between 5 and 10 hours. At the output of the reaction section, the effluent containing the catalyst is chemically neutralized and the catalyst residue is separated from the products by aqueous washing. The catalyst components are not recycled. Unconverted olefin and inert hydrocarbons are separated from the octenes by distillation columns. The catalytic system is sensitive to impurities that can coordinate strongly to the nickel metal center or can react with the alkylaluminium derivative (polyunsaturated hydrocarbons and polar compounds such as water). [Pg.272]

From the statement in the text that nickel metal reacts with H+ to give H2(g) and the additional information that zinc metal reacts readily with nickel sulfate solution, decide where to add the half-reaction Ni-Ni+2 in our list. [Pg.206]

Nickel metal reacts with cupric ions, Cu42, but not with zinc ions, Zn42 magnesium metal does react with Zn42. In each case of reaction, ions of +2 charge are formed. Use these data to expand the table of reactions on p. 206. [Pg.222]

The reaction is a sensitive one, but is subject to a number of interferences. The solution must be free from large amounts of lead, thallium (I), copper, tin, arsenic, antimony, gold, silver, platinum, and palladium, and from elements in sufficient quantity to colour the solution, e.g. nickel. Metals giving insoluble iodides must be absent, or present in amounts not yielding a precipitate. Substances which liberate iodine from potassium iodide interfere, for example iron(III) the latter should be reduced with sulphurous acid and the excess of gas boiled off, or by a 30 per cent solution of hypophosphorous acid. Chloride ion reduces the intensity of the bismuth colour. Separation of bismuth from copper can be effected by extraction of the bismuth as dithizonate by treatment in ammoniacal potassium cyanide solution with a 0.1 per cent solution of dithizone in chloroform if lead is present, shaking of the chloroform solution of lead and bismuth dithizonates with a buffer solution of pH 3.4 results in the lead alone passing into the aqueous phase. The bismuth complex is soluble in a pentan-l-ol-ethyl acetate mixture, and this fact can be utilised for the determination in the presence of coloured ions, such as nickel, cobalt, chromium, and uranium. [Pg.684]

In normal battery operation several electrochemical reactions occur on the nickel hydroxide electrode. These are the redox reactions of the active material, oxygen evolution, and in the case of nickel-hydrogen and nickel-metal hydride batteries, hydrogen oxidation. In addition there are parasitic reactions such as the corrosion of nickel current collector materials and the oxidation of organic materials from separators. The initial reaction in the corrosion process is the conversion of Ni to Ni(OH)2. [Pg.145]

There have been many instances of examination of the effect of additive product on the initiation of nucleation and growth processes. In early work on the dehydration of crystalline hydrates, reaction was initiated on all surfaces by rubbing with the anhydrous material [400]. An interesting application of the opposite effect was used by Franklin and Flanagan [62] to inhibit reaction at selected crystal faces of uranyl nitrate hexa-hydrate by coating with an impermeable material. In other reactions, the product does not so readily interact with reactant surfaces, e.g. nickel metal (having oxidized boundaries) does not detectably catalyze the decomposition of nickel formate [222],... [Pg.36]

Ni3C decomposition is included in this class on the basis of Doremieux s conclusion [669] that the slow step is the combination of carbon atoms on reactant surfaces. The reaction (543—613 K) obeyed first-order [eqn. (15)] kinetics. The rate was not significantly different in nitrogen and, unlike the hydrides and nitrides, the mobile lattice constituent was not volatilized but deposited as amorphous carbon. The mechanism suggested is that carbon diffuses from within the structure to a surface where combination occurs. When carbon concentration within the crystal has been decreased sufficiently, nuclei of nickel metal are formed and thereafter reaction proceeds through boundary displacement. [Pg.154]

In the last decade, a new aspect of nickel-catalyzed reactions has been disclosed, where nickel serves to selectively activate dienes as either an al-lyl anion species or a homoallyl anion species (Scheme 1). These anionic species are very important reactive intermediates for the construction of desired molecules. Traditionally they have been prepared in a stoichiometric manner from the corresponding halides and typical metals, e.g., Li, Mg. In this context, the catalytic generation method of allyl anions and homoallyl anions disclosed here might greatly contribute to synthetic organic chemistry and organotransition metal chemistry. [Pg.182]

Notably, not only electron-rich dienes, but also electron-deficient dienes nicely participate in the reaction and react benzaldehyde with similar ease and in a similar sense of stereoselectivity. For example, methyl sorbate provides the 1,2-anti isomer exclusively in good yield with excellent regio- and stereoselectivity (run 7). The regioselectivity reacting at Cl of the diene skeleton might stem from electronic factors rather than from other factors such as coordination the coordination of the ester oxygen to nickel metal center, since ( , )-l-(methoxymethyl)-4-methyl-l,3-butadiene and (E,E)-1-(hydroxymethyl)-4-methyl-l,3-butadiene furnish the C4 adducts selectively together with the Cl adducts as minor products (not shown). Notably,... [Pg.194]

There are few reports of oxidative addition to zerovalent transition metals under mild conditions three reports involving group 10 elements have appeared. Fischer and Burger reported the preparation of aTT -allylpalladium complex by the reaction of palladium sponge with allyl bromide(63). The Grignard-type addition of allyl halides to aldehydes has been carried out by reacting allylic halides with cobalt or nickel metal prepared by reduction of cobalt or nickel halides with manganese/iron alloy-thiourea(64). [Pg.231]

The development of the Grignard-type addition to carbonyl compounds mediated by transition metals would be of interest as the compatibility with a variety of functionality would be expected under the reaction conditions employed. One example has been reported on the addition of allyl halides to aldehydes in the presence of cobalt or nickel metal however, yields were low (up to 22%). Benzylic nickel halides prepared in situ by the oxidative addition of benzyl halides to metallic nickel were found to add to benzil and give the corresponding 3-hydroxyketones in high yields(46). The reaction appears to be quite general and will tolerate a wide range of functionality. [Pg.233]

Novel transition metal-mediated strategies were also well represented this past year. Takahashi and co-workers reported a s nickel-catalyzed reaction between azaziconacyclopentadienes (9) and alkynes to form pyridines (10) of varying substitution patterns <00JA4994>. This methodology, a formal cyclotrimerization, is also noteworthy since two different alkynes can be used. In similar fashion, Eaton reported an aqueous, cobalt(II) catalyzed cyclotrimerization between two identical acetylenes and one nitrile to afford substituted pyridines . [Pg.239]

The reactivity of metal phosphide cations [MPJ+, and anions [MPJ , may also be studied in the gas phase. Laser ablation of mixtures of cobalt or nickel metal powders with red phosphorus gave a range of anions M PJ and cations [MPJ+ (185). The anions were unreactive, but the cations have been reacted with several neutral molecules. The ions [MPJ+, where M = Co, Ni and x = 2,4, 8, undergo five types of reactions. [Pg.390]

Adducts were obtained as exclusive adducts or as by-products in the nickel mediated reactions of some substituted norbomadienes with various dienophiles. The formation of these products was considered to result from an intermediate metallocy-clopentane species built up of the metal center, the dienophilic double bond and one of the double bonds of the norbomadiene moiety. [Pg.458]

A marked effect of the Ce02/Zr02 composition (in samples containing 40 wt.% NiO) on the catalytic activity was noticed. The catalysts with Ce Zr =1 1 (6A) were not only more active (than 7A and 8A) but were also stable during the reaction. Sample 8A containing no zirconia in the support showed a low activity. The NiO crystallite size (Table 11.2) in these compositions varied in the order 7A < 6A < 8A. It may be recalled that on ceria-based catalysts the crystallite size of nickel metal was similar to that of NiO. The higher activity for 6A than 7A indicates that in addition to accessibility of... [Pg.194]

Molten Carbonate Fuel Cell The electrolyte in the MCFC is a mixture of lithium/potassium or lithium/sodium carbonates, retained in a ceramic matrix of lithium aluminate. The carbonate salts melt at about 773 K (932°F), allowing the cell to be operated in the 873 to 973 K (1112 to 1292°F) range. Platinum is no longer needed as an electrocatalyst because the reactions are fast at these temperatures. The anode in MCFCs is porous nickel metal with a few percent of chromium or aluminum to improve the mechanical properties. The cathode material is hthium-doped nickel oxide. [Pg.49]

Shao et al. [25] prepared Mg Ni from magnesium and nickel nanoparticles produced by hydrogen plasma-metal reaction. Two preparation methods were developed to obtain the compound. One is heating the nanoparticles under 0.10 MPa argon pressure at 430°C and the other is under 3.00 MPa hydrogen pressure at 280°C. No hydrogen storage properties of this material were assessed. [Pg.197]

Eisch and Im (1977) found another simple example of a technique controlling the stereoisomeric composition of the reaction product. The technique consists of varying the time of contact between the reactants. Scheme 7.2 illustrates the transformation of p-(trimethylsilyl)styrene oxide into P-(trimethylsilyl)styrene under the action of complexes of zerovalent nickel the reaction involves oxidation of the complex-bonded metal. [Pg.350]

Nickel aluminate, a spinel, has long been known to trap nickel. Metals like arsenic(19), antimony(20-21) and bismuth(20) are known to passivate transition elements and can be used to decrease and coke make. Sulfur is also a known inhibitor for nickel therefore, higher sulfur-containing crudes may be a little less sensitive to nickel poisoning. In our work we also found that nickel at low concentrations is actually a slight promoter of the cracking reaction when incorporated into a molecular sieve (Figure 17). [Pg.333]

The most important applications of nickel metal involve its use in numerous alloys. Such alloys are used to construct various equipment, reaction vessels, plumbing parts, missile, and aerospace components. Such nickel-based alloys include Monel, Inconel, HasteUoy, Nichrome, Duranickel, Udinet, Incoloy and many other alloys under various other trade names. The metal itself has some major uses. Nickel anodes are used for nickel plating of many base metals to enhance their resistance to corrosion. Nickel-plated metals are used in various equipment, machine parts, printing plates, and many household items such as scissors, keys, clips, pins, and decorative pieces. Nickel powder is used as porous electrodes in storage batteries and fuel cells. [Pg.606]

The more common carbonyl refining process involves reaction of crude nickel with carbon monoxide under pressure at 100°C to form nickel tetracar-bonyl, Ni(CO)4. The liquid tetracarbonyl upon heating at 300°C decomposes to nickel metal and carbon monoxide. Very pure nickel can be obtained by the carbonyl refining processes, as no other metal forms a simdar carbonyl under these conditions. [Pg.607]

In the case of phosphine, especially tri-n-butyl and triphenyl phosphines, an active phosphine complex is formed in the reaction medium via reaction with nickel carbonyl. This complex is a very active species provided that the optimum concentration of phosphine is used. Low phosphine concentration results in a loss of the effective nickel concentration through the formation of nickel tetra-carbonyl, nickel metal or nickel iodide. The absolute concentration of phosphine is less important than the P/Ni ratio. In addition to form the stable Ni-P catalyst, the phosphine has to compete with other ligands in the reaction mixture for nickel. With high carbon monoxide partial pressure, there is more CO in solution to compete with phosphine favoring the formation of the carbonyl, which is inactive under the reaction conditions. Hence with high carbon mon-... [Pg.63]


See other pages where Nickel metal, reactions is mentioned: [Pg.10]    [Pg.208]    [Pg.2413]    [Pg.21]    [Pg.212]    [Pg.605]    [Pg.81]    [Pg.147]    [Pg.347]    [Pg.675]    [Pg.137]    [Pg.140]    [Pg.9]    [Pg.452]    [Pg.706]    [Pg.357]    [Pg.855]    [Pg.299]    [Pg.195]    [Pg.194]    [Pg.34]    [Pg.191]    [Pg.147]    [Pg.148]    [Pg.73]    [Pg.433]   
See also in sourсe #XX -- [ Pg.85 ]




SEARCH



Metal nickel

Metallic nickel

Reaction nickel

© 2024 chempedia.info