Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron-rich diene

FMO theory requires that a HOMO of one reactant has to be correlated with the LUMO of the other reactant. The decision between the two alternatives - i.e., from which reactant the HOMO should be taken - is made on the basis of which is the smaller energy difference in our case the HOMO of the electron rich diene, 3.1, has to be correlated with the LUMO of the electron-poor dienophile, 3.2. The smaller this HOMO-LUMO gap, the higher the reactivity will be. With the HOMO and LUMO fixed, the orbital coefficients of these two orbitals can explain the regios-electivity of the reaction, which strongly favors the formation of 3.3 over 3.4. [Pg.179]

D-A rxns with electron rich dienes and electron defficient dienophiles work the best. [Pg.151]

A major difficulty with the Diels-Alder reaction is its sensitivity to sterical hindrance. Tri- and tetrasubstituted olefins or dienes with bulky substituents at the terminal carbons react only very slowly. Therefore bicyclic compounds with polar reactions are more suitable for such target molecules, e.g. steroids. There exist, however, several exceptions, e. g. a reaction of a tetrasubstituted alkene with a 1,1-disubstituted diene to produce a cyclohexene intermediate containing three contiguous quaternary carbon atoms (S. Danishefsky, 1979). This reaction was assisted by large polarity differences between the electron rich diene and the electron deficient ene component. [Pg.86]

The most common and synthetically most useful Diels-Alder reactions involve the addition of an electron-rich diene and an electron-poor dienophile, e.g. [Pg.273]

According to Frontier Molecular Orbital (FMO) theory, Diels-Alder reaction between an electron-rich diene and an electron-poor dienophile involves interaction between the highest-occupied molecular orbital (HOMO) on the diene and the lowest-unoccupied molecular orbital (LUMO) on the dienophile. The better the HOMO/LUMO overlap and the smaller their energy difference, the more favorable the interaction and the faster the reaction. [Pg.275]

Experimentally, the rates of Diels-Alder reactions between electron-rich dienes and electron-poor dienophiles generally increase with increased alkyl substitution on the diene. This is because alkyl groups act as electron donors and lead to buildup of electron density on the diene. An exception to this is the reaction of Z,Z-hexa-2,4-diene with tetracyanoethylene (TCNE), which is actually slower than the corresponding addition involving E-penta-1,3-diene. [Pg.277]

The normal electron-demand reaction is a HOMOdiene-LUMOdienophUeelectron-deficient dienophiles (Scheme 4.2, left dotted line). The inverse electron-demand cycloaddition reaction is primarily controlled by a LUMOdiene HOMOdienophiie inter-... [Pg.152]

The Diels-Alder reaction,is a cycloaddition reaction of a conjugated diene with a double or triple bond (the dienophile) it is one of the most important reactions in organic chemistry. For instance an electron-rich diene 1 reacts with an electron-poor dienophile 2 (e.g. an alkene bearing an electron-withdrawing substituent Z) to yield the unsaturated six-membered ring product 3. An illustrative example is the reaction of butadiene 1 with maleic anhydride 4 ... [Pg.89]

Recently, enhanced endo selectivity has been reported in the Diels-Alder reaction of fE -l-acetoxybuta-l,3-dienes with methyl fi-nitroacrylate The selectivity is compared with that of the reaction using l-methoxybuta-l,3-dienes and 1-trimethylsilyloxybuta-1,3-di-enes The degree of electron richness of a diene is an important consideration in endo eKO selectivity issues In particular, electron-rich dienes favor the formation of fixc-nitrocycload-ducts fEq 8 9 ... [Pg.235]

Interestingly, benzonitrile oxide does not react with thiirene dioxide 19b even in boiling benzene, whereas the electron-rich diene l-piperidino-2-methyl-l, 3-pentadiene (177) does react under the same reaction conditions to give the expected six-membered [4 + 2] cycloadduct 178, accompanied by sulfur dioxide extrusion and 1,3-hydrogen shift to form the conjugated system 179175 (equation 70). [Pg.429]

At this point the catalytic process developed by Dotz et al. using diazoalkanes and electron-rich dienes in the presence of catalytic amounts of pentacar-bonyl(r]2-ds-cyclooctene)chromium should be mentioned. This reaction leads to cyclopentene derivatives in a process which can be considered as a formal [4S+1C] cycloaddition reaction. A Fischer-type non-heteroatom-stabilised chromium carbene complex has been observed as an intermediate in this reaction [23a]. [Pg.88]

Alkoxy alkynylcarbene complexes undergo Diels-Alder reactions with neutral and electron-rich dienes [36f, 104] and also with 1-aza- and 2-aza-l,3-butadi-ene derivatives [84a, 105] (Scheme 57). [Pg.97]

Epoxidations of chiral allenamides lead to chiral nitrogen-stabilized oxyallyl catioins that undergo highly stereoselective (4 + 3) cycloaddition reactions with electron-rich dienes.6 These are the first examples of epoxidations of allenes, and the first examples of chiral nitrogen-stabilized oxyallyl cations. Further elaboration of the cycloadducts leads to interesting chiral amino alcohols that can be useful as ligands in asymmetric catalysis (Scheme 2). [Pg.79]

First stereoselective [4 + 2] cycloaddition reactions of 3-cyanochromone derivatives with electron-rich dienes an approach to the ABC tricyclic frame of arysugacin [150]... [Pg.88]

Kahn and Hehre stated that the regiochemistry of Diels-Alder reactions of electron-rich dienes and electron-withdrawing dienophiles follows from matching the nucle-ophilicity of the dienes and the electrophilicity of the dienophiles, although it has... [Pg.207]

Kahn and Hehre straightforwardly extended this idea to the description of Jt-facial selectivity in Diels Alder reactions. They simply stated cycloaddition involving electron-rich dienes and electron-poor dienophiles should occur preferentially onto the diene face which is the more nucleophilic and onto the diene face which exhibits the greater electrophihcity (Scheme 40) [49],... [Pg.208]

The reaction between o-quinones and electron rich dienes leads to benzodioxanes. It is proposed that an initial HDA followed by a [3,3] sigmatropic rearrangement account for the stereochemistry of the products <96JCS(P1)443>. [Pg.307]

Lewis acids such as zinc chloride, boron trifluoride, tin tetrachloride, aluminum chloride, methylaluminum dichloride, and diethylaluminum chloride catalyze Diels-Alder reactions.22 The catalytic effect is the result of coordination of the Lewis acid with the dienophile. The complexed dienophile is more electrophilic and more reactive toward electron-rich dienes. The mechanism of the addition is believed to be concerted and enhanced regio- and stereoselectivity is often observed.23... [Pg.481]

Notably, not only electron-rich dienes, but also electron-deficient dienes nicely participate in the reaction and react benzaldehyde with similar ease and in a similar sense of stereoselectivity. For example, methyl sorbate provides the 1,2-anti isomer exclusively in good yield with excellent regio- and stereoselectivity (run 7). The regioselectivity reacting at Cl of the diene skeleton might stem from electronic factors rather than from other factors such as coordination the coordination of the ester oxygen to nickel metal center, since ( , )-l-(methoxymethyl)-4-methyl-l,3-butadiene and (E,E)-1-(hydroxymethyl)-4-methyl-l,3-butadiene furnish the C4 adducts selectively together with the Cl adducts as minor products (not shown). Notably,... [Pg.194]

Diels-Alder cycloaddition reactions of electron-poor dienophiles to electron-rich dienes, which are generally carried out thermally, afford widespread applications for C—C bond formation. On the basis of their electronic properties, numerous dienes can be characterized as electron donors and dienophiles as electron acceptors. Despite the early suggestions by Woodward,206 the donor/ acceptor association and electron-transfer paradigm are usually not considered as the simplest mechanistic formulation for the Diels-Alder reaction. However, the examples of cycloaddition reactions described below will show that photoirradiation of various D/A pairs leads to efficient cycloaddition reactions via electron-transfer activation. [Pg.264]

Donor (electron-rich) diene and acceptor (electron-poor) ene (dienophile), designated DdEa. [Pg.717]

These sulfonylallenes undergo the Diels-Alder reaction with electron-rich dienes at the proximal C-C double bond in a regioselective manner [109],... [Pg.768]

The main stabilization in reactions with activated reaction partners, viz. when one partner is electron-rich and the other electron-poor, arises through interaction between the donor HOMO and the acceptor LUMO which are much closer in energy than the acceptor HOMO and the donor LUMO. Figure 2 illustrates which interactions between the frontier orbitals cause the main stabilization in normal, neutral and inverse Diels-Alder reactions. For example, the main stabilization in the reaction between an electron-rich diene and an electron-poor dienophile stems from the interaction of the diene HOMO with the dienophile LUMO. [Pg.340]

In a similar way, 2-(methoxycarbonyl)-l,3-butadiene (39) dimerizes rapidly, even in the presence of electron-rich dienes such as 40a or 40b, as illustrated in equation 1865. The dimeric adduct 41 and the mixed adduct 42 were obtained in ratios of 90 10 and 75 25 in the reactions of 39 with 40a and 40b, respectively. [Pg.343]

Cheng and coworkers142 reported the first Diels-Alder reactions of fullerenes with dienes having an electron-withdrawing group at C(l). The reactions with [60]fullerene proceeded at elevated temperatures to afford the corresponding adducts with moderate yields. The adducts appeared to be more stable than the adducts of electron-rich dienes. [Pg.379]

Chiral boron catalysts had already been widely used in a variety of reactions before they were applied in Diels-Alder reactions220. Boron catalysts were first employed in the Diels-Alder reactions of quinones with electron-rich dienes. Kelly and coworkers221 found that stoichiometric amounts of a catalyst prepared from BH3, acetic acid and 3,3 -diphenyl-l,l/-bi-2-naphthol (344) catalyzed the reaction of 1-acetoxy-l,3-butadiene (341) with juglone (342) to afford cycloadduct 343 with 98% ee (equation 96). The reaction was supposed to proceed via a spirocyclic borate complex in which one face of the double bond of juglone was effectively shielded from attack by the diene. [Pg.409]

Rigby and coworkers obtained some conflicting results. When electron-rich dienes were employed, exposure of the reaction mixtures to a blanket of CO after photolysis led to increased yields, which is in support of mechanism 1 (the 497 to 498 step). [Pg.443]

Rigby and coworkers305,309 also performed metal mediated [6 + 4] cycloadditions of heterocyclic trienes and tropones with various dienes. In concurrence with the all-carbon trienes, the electronic nature of the diene partners generally had little influence on the cycloaddition efficiency. The only reported exceptions are the reactions of thiepin-1,1-dioxides. Lower yields were observed in the reactions involving electron-deficient dienes in comparison with the reactions with electron-rich dienes. The reaction of complex 514... [Pg.447]

The presence of electron-donating substituents in the diene enables it to react with simple aldehydes thus both acetaldehyde and benzaldehyde add to 1-methoxy-1,3-butadiene at 50-65 °C under high pressure (20 Kbar) to give dihydropyrans as 70 30 mixtures of cis- and frans-isomers (equation 5)4. The combination of electron-rich diene/electron-poor dienophile makes it possible to perform the reaction under milder conditions. 2-Alkyl-l-ethoxy-1,3-butadienes and diethyl mesoxalate afford dihydropyrans almost quantitatively (equation 6)5. [Pg.482]

The interactions of the occupied orbitals of one reactant with the unoccupied orbitals of the other are described by the third term of the Klopman-Salem-Fukui equation. This part is dominant and the most important for uncharged reaction partners. Taking into account that the denominator is minimized in case of a small energy gap between the interacting orbitals, it is clear that the most important interaction is the HOMO-LUMO overlap. With respect to the Diels-Alder reaction, one has to distinguish between two possibilities depending on which HOMO-LUMO pair is under consideration. The reaction can be controlled by the interaction of the HOMO of the electron-rich diene and the LUMO of the electron-poor dienophile (normal electron demand) or by the interaction of the LUMO of an electron-poor diene and the HOMO of an electron-rich dienophile (inverse electron demand cf Figure 1). [Pg.1039]

Ab initio calculations on aza-Diels-Alder reactions of electron-deficient imines with buta-l,3-diene show that these reactions are HOMO (diene)-LUMO(dienophile)-controlled and that electron-deficient imines should be more reactive than alkyl-or aryl-imines. The Diels-Alder reaction of r-butyl 2//-azirine-3-carboxylate (80) proceeds with high diastereoselectivity with electron-rich dienes (81) (Scheme 28). The hetero-Diels-Alder additions of imines with sterically demanding dienes yield perhydroquinolines bearing an angular methyl group. The asymmetric hetero-Diels-Alder reaction between alkenyloxazolines and isocyanates produces diastereometri-cally pure oxazolo[3,2-c]pyrimidines. °... [Pg.469]

The aza-Diels-Alder reaction is an important and versatile tool for the preparation of nitrogen-containing heterocycles present in numerous natural products and drug candidates. It involves the [4 + 2] cycloaddition of either an imine with an electron-rich diene or an azabutadiene with an electron-rich alkene (inverse electron demand). Catalytic asymmetric variants employing not only metal complexes, but also organic molecules were disclosed over the last few years. [Pg.424]

The same group expanded the scope of the aza-Diels-Alder reaction of electron-rich dienes to Brassard s diene 97 (Scheme 37) [60]. In contrast to Danishefsky s diene, it is more reactive, but less stable. Akiyama et al. found chiral BINOL phosphate (R)-3m (3 mol%, R = 9-anthryl) with 9-anthryl substituents to promote the [4 + 2] cycloaddition of A-arylated aldimines 94 and Brassard s diene 97. Subsequent treatment with benzoic acid led to the formation of piperidinones 98. Interestingly, the use of its pyridinium salt (3 mol%) resulted in a higher yield (87% instead of 72%) along with a comparable enantioselectivity (94% ee instead of 92% ee). This method furnished cycloadducts 98 derived from aromatic, heteroaromatic, a,P-unsaturated, and aliphatic precursors 94 in satisfactory yields (63-91%) and excellent enantioselectivities (92-99% ee). NMR studies revealed that Brassard s diene 97 is labile in the presence of phosphoric acid 3m (88% decomposition after 1 h), but comparatively stable in the presence of its pyridinium salt (25% decomposition after 1 h). This observation can be explained by the fact that the pyridinium salt is a weak Brpnsted acid compared to BINOL phosphate 3m. [Pg.425]


See other pages where Electron-rich diene is mentioned: [Pg.817]    [Pg.314]    [Pg.165]    [Pg.429]    [Pg.475]    [Pg.200]    [Pg.191]    [Pg.21]    [Pg.339]    [Pg.374]    [Pg.377]    [Pg.437]    [Pg.13]    [Pg.467]    [Pg.697]    [Pg.333]   
See also in sourсe #XX -- [ Pg.661 , Pg.664 ]

See also in sourсe #XX -- [ Pg.141 ]




SEARCH



Electron richness

Electron-rich

© 2024 chempedia.info