Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Neutron activation analysis results

Gladney and Perrin [6] used epithermal neutron activation analysis to determine down to 50 ppb bromine in the US Geological Survey Reference Soils GXR-2, GXR-5 and GXR-6, and the Canadian Certified Reference Soils SO-1, SO-2, SG-3 and SO-4. The values reported in Table 6.1 indicate that good agreement was obtained between neutron activation analysis results and recommended values. The relative standard deviation was on the order of 10% over the concentration range 1-15 ppm bromine ... [Pg.155]

Flow injection hydride generation has been used to measure As, Hg, and Se in coals with detection limits in the 2- to 5-ng/g range [341]. Comparison of ICP-MS and neutron activation analysis results showed good agreement. [Pg.135]

Westoo reported results obtained by gas chromatography with electron capture and with mass spectrometric detection on a range of samples of fish, (Table 17) Total mercury was also determined on these samples by neutron activation analysis. Results obtained by the three methods agree with 10% of the average value. [Pg.53]

Results obtained for polyethylene samples containing residual silica support of three different catalysts by infrared (470 cm method), neutron activation analysis, ashing and weight are shown in Table 7.36. Infrared results differ from neutron activation analysis results by 0 - 5% while ashing and weighing techniques differ from neutron activation analysis results by 5 - 21% and 5 - 28% respectively. [Pg.338]

Neutron Activation Analysis Few samples of interest are naturally radioactive. For many elements, however, radioactivity may be induced by irradiating the sample with neutrons in a process called neutron activation analysis (NAA). The radioactive element formed by neutron activation decays to a stable isotope by emitting gamma rays and, if necessary, other nuclear particles. The rate of gamma-ray emission is proportional to the analyte s initial concentration in the sample. For example, when a sample containing nonradioactive 13AI is placed in a nuclear reactor and irradiated with neutrons, the following nuclear reaction results. [Pg.645]

The chemical composition of particulate pollutants is determined in two forms specific elements, or specific compounds or ions. Knowledge of their chemical composition is useful in determining the sources of airborne particles and in understanding the fate of particles in the atmosphere. Elemental analysis yields results in terms of the individual elements present in a sample such as a given quantity of sulfur, S. From elemental analysis techniques we do not obtain direct information about the chemical form of S in a sample such as sulfate (SO/ ) or sulfide. Two nondestructive techniques used for direct elemental analysis of particulate samples are X-ray fluorescence spectroscopy (XRF) and neutron activation analysis (NAA). [Pg.205]

All the techniques discussed here involve the atomic nucleus. Three use neutrons, generated either in nuclear reactors or very high energy proton ajccelerators (spallation sources), as the probe beam. They are Neutron Diffraction, Neutron Reflectivity, NR, and Neutron Activation Analysis, NAA. The fourth. Nuclear Reaction Analysis, NRA, uses charged particles from an ion accelerator to produce nuclear reactions. The nature and energy of the resulting products identify the atoms present. Since NRA is performed in RBS apparatus, it could have been included in Chapter 9. We include it here instead because nuclear reactions are involved. [Pg.645]

This can result in a radioactive product from the A(n, t)A reaction where A is the stable element, n is a thermal neutron, A is the radioactive product of one atomic mass unit greater than A, and y is the prompt gamma ray resulting from the reaction. A is usually a beta and/or gamma emitter of reasonably long half-life. Where access to a nuclear reactor has been convenient, thermal neutron activation analysis has proven to be an extremely valuable nondestructive analytical tool and in many cases, the only method for performing specific analyses at high sensitivities... [Pg.356]

Neutron activation analysis (NAA) is a technique for the qualitative and/or quantitative determination of atoms possessing certain types of nuclei. Bombarding a sample with neutrons transforms some stable isotopes into radioactive isotopes measuring the energy and/or intensity of the gamma rays emitted from the radioactive isotopes created as a result of the irradiation reveals information on the nature of the elements in the sample. NAA Is widely used to characterize such archaeological materials as pottery, obsidian, chert, basalt, and limestone (Keisch 2003). [Pg.61]

Calcium-selective electrodes have long been in use for the estimation of calcium concentrations - early applications included their use in complexometric titrations, especially of calcium in the presence of magnesium (42). Subsequently they have found use in a variety of systems, particularly for determining stability constants. Examples include determinations for ligands such as chloride, nitrate, acetate, and malonate (mal) (43), several diazacrown ethers (44,45), and methyl aldofuranosides (46). Other applications have included the estimation of Ca2+ levels in blood plasma (47) and in human hair (where the results compared satisfactorily with those from neutron activation analysis) (48). Ion-selective electrodes based on carboxylic polyether ionophores are mentioned in Section IV.B below. Though calcium-selective electrodes are convenient they are not particularly sensitive, and have slow response times. [Pg.258]

After adjusting to 2 mol 1 1 in hydrochloric acid, 500 ml of the sample is adsorbed on a column of Dowex 1-XS resin (Cl form) and elution is then effected with 2 M nitric acid. The solution is evaporated to dryness after adding 1M hydrochloric acid, and the tin is again adsorbed on the same column. Tin is eluted with 2 M nitric acid, and determined in the eluate by the spectrophotometric catechol violet method. There is no interference from 0.1 mg of aluminium, manganese, nickel, copper, zinc, arsenic, cadmium, bismuth, or uranium any titanium, zirconium, or antimony are removed by ion exchange. Filtration of the sample through a Millipore filter does not affect the results, which are in agreement with those obtained by neutron activation analysis. [Pg.224]

WVGES has not had analytical laboratory facilities since the 1970 s so contract geochemical analyses are a necessity. After considering a variety of sources for analytical work including both university and government laboratories, we decided to use a commercial lab, located in Ontario, which specializes in analyses for the mineral exploration industry (they have since expanded into the environmental field as well). For the sake of consistency, each sample is analyzed using the same set of techniques, a combination of Instrumental Neutron Activation Analysis (INAA) and Selective Extraction-Ignition Coupled Plasma spectroscopy that yield results for 49 elements - Au, Ag, As, Ba, Br, Ca, Co, Cr, Cs, Fe, Hf, Hg, Ir, Mo, Na, Ni, Rb, Sb, Sc, Se, Sn, Sr, Ta, Th, U, W, Zn, La, Ce, Nd, Sm, Eu, Tb, Yb, Lu, Cu, Pb, Mn, Cd,... [Pg.410]

Cluster analysis Is used to determine the particle types that occur in an aerosol. These types are used to classify the particles in samples collected from various locations and sampling periods. The results of the sample classifications, together with meteorological data and bulk analytical data from methods such as instrunental neutron activation analysis (INAA). are used to study emission patterns and to screen samples for further study. The classification results are used in factor analysis to characterize spatial and temporal structure and to aid in source attribution. The classification results are also used in mass balance comparisons between ASEM and bulk chemical analyses. Such comparisons allow the combined use of the detailed characterizations of the individual-particle analyses and the trace-element capability of bulk analytical methods. [Pg.119]

Selected ion monitoring can be used for the determination of the relative amount of each component of a mixture, introduced into the mass spectrometer by the direct inlet probe However, such a determination requires reference mixtures of known composition for calibration. In the present experiment, since the monochloro pentaziridino derivative had not yet been isolated in the pure form, it was necessary to determine its concentration, by an auxiliary method, in a sample which could then be utilized as a reference mixture for further experiments. In order to do this we titrated chlorine in the toxic sample of MYKO 63 (B) by the classical method. The results indicated that the amount of N3P3AZJCI was between 0.5-1.5 %. The large statistical error is due to the low chlorine content in the sample examined. Thus, we used the remarkable possibilities provided by neutron activation analysis when the impurity to be quantified is a chlorinated moiety. It is well-known indeed that the C1 -f 2n peak is amongst the most easily detectable by neutron... [Pg.17]

Radioactive lateling of this cluster and neutron activation analysis of the g)ld enabled us to determine the extent of Nnding of the cluster to the particles. The results of both analytical methods show that a spacer of minimum length of about 10 A between the -SH group of a ribosomal protein and the N-atom on the cluster is n ed for significant binding. Preliminary experiments indicate that the producte of the derivatization reaction with SOS particles can be crystallized. [Pg.70]


See other pages where Neutron activation analysis results is mentioned: [Pg.352]    [Pg.471]    [Pg.965]    [Pg.162]    [Pg.352]    [Pg.471]    [Pg.965]    [Pg.162]    [Pg.51]    [Pg.671]    [Pg.358]    [Pg.4]    [Pg.66]    [Pg.69]    [Pg.70]    [Pg.138]    [Pg.662]    [Pg.86]    [Pg.284]    [Pg.443]    [Pg.24]    [Pg.138]    [Pg.279]    [Pg.107]    [Pg.373]    [Pg.7]    [Pg.8]    [Pg.63]    [Pg.123]    [Pg.319]    [Pg.345]    [Pg.46]    [Pg.61]    [Pg.259]    [Pg.195]    [Pg.263]    [Pg.344]    [Pg.352]    [Pg.163]   
See also in sourсe #XX -- [ Pg.82 , Pg.83 , Pg.84 ]




SEARCH



Neutron activation

Neutron activation analysi

Neutron activation analysis

Neutron analysis

Results analysis

© 2024 chempedia.info