Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Monolithic columns using

A flow injection system coupled to a monolithic column has been described for the simultaneous determination of antioxidants (PG and BHA), sweeteners (potassium acesulfame, sodium saccharin, and aspartame), and preservatives (methylparaben, eth-ylparaben, propylparaben, and butylparaben), using photometric detection [56]. The monolithic column used as separation system was a 5 mm commercial precolumn of silica Cjg. The mixture was separated in only 400 s with resolution factors greater than 1.1 in all cases. Detection was accomplished by means of a DAD at the respective wavelength of each compound. The detection limit obtained for PG was 0.02 pg/mL. The method was applied to the analysis of food and cosmetic samples and the results were compared with those obtained using a conventional LC method. [Pg.249]

Monolithic columns, formed from the co-polymerization of divinylbenzene and vinylbenzyl chloride or styrene, were observed to be resistant to bubble formation.11 Application of pressure in electrochromatography, discussed below, also reduces bubble formation. A massively parallel detector capable of scanning up to 1000 capillaries using planar confocal fluorescence has been used for DNA sequencing.1213 Recovery of fluorescence following pho-tobleaching has been used to measure DNA mobility in agarose gel.14... [Pg.428]

We use the second-dimension separation from Fig. 6.6 with a 25 pL injection volume and 2.5 min sampling time the separation is an RPLC method that uses a monolithic column. Thus, 10 pL/min is the maximum flow rate in the first-dimension. Fig. 6.7 shows the development of the first-dimension column that utilizes a hydrophilic interaction (or HILIC) column for the separation of proteins at decreasing flow rates. The same proteins were separated in Fig. 6.6 (RPLC) and 6.7 (HILIC) and have a reversed elution order, which is known from the basics of HILIC (Alpert, 1990). It is believed that HILIC and RPLC separations are a good pair for 2DLC analysis of proteins as they appear to have dissimilar retention mechanisms, much like those of NPLC and RPLC it has been suggested that HILIC is similar in retention to NPLC (Alpert, 1990). Because the HILIC column used in Fig. 6.7 gave good resolution at 0.1 mL/min and no smaller diameter column was available, the flow was split 10-fold to match the second-dimension requirement... [Pg.141]

Polymer monolithic columns with small diameter have been successfully employed for proteome analysis. Karger and coworkers reported MALDI-TOF of separated fractions spotted on a plate from a polymeric reversed-phase column that showed high peak capacity (Chen et al., 2005). Huber and coworkers reported separation and detection of about 200 peaks within 5 min by using a PSDVB column (Premstaller et al., 2001). [Pg.152]

Utilizing the difference in selectivity between a monolithic silica-C18 column (2nd-D) and another particle-packed column of C18 phase (lst-D), 2D HPLC separation was shown mainly for basic compounds and other species (Venkatramani and Zelechonok, 2003). The authors also reported other examples of reversed-phase 2D HPLC, using amino- and cyano-derivatized particle-packed columns for 2nd-D separation. The combination of normal-phase separation for the 1 st-D and reversed-phase separation on monolithic Ci g column for the 2nd-D was reported (Dugo et al., 2004). The use of a microbore column and weak mobile phase for the lst-D and a monolithic column for the 2nd-D was essential for successful operation. Improvement in the 2D separation of complex mixtures of Chinese medicines was also reported (Hu et al., 2005). Following are practical examples of comprehensive 2D HPLC using monolithic silica columns that have been reported. [Pg.161]

Ion Exchange-Reversed-Phase 2D HPLC Using a Monolithic Column for the 2nd-D... [Pg.166]

Hu, L., Chen, X., Kong, L., Su, X., Ye, M., Zou, H. (2005). Improved performance of comprehensive two-dimensional HPLC separation of traditional Chinese medicines by using a silica monolithic column and normalization of peak heights. J. Chromatogr. A 1092, 191 198. [Pg.172]

Tholey, A., Toll, H., Huber, C.G. (2005). Separation and detection of phosphorylated and nonphosophorylated peptides in hquid chromatography—mass spectrometry using monolithic columns and acidic or alkaline mobile phases. Anal. Chem. 77, 4618 1625. [Pg.175]

Volmer, D.A., Brombacher, S., Whitehead, B. (2002). Studies on azaspiracid biotoxins. I. Ultrafast high-resolution liquid chromatography/mass spectrometry separations using monolithic columns. Rapid Commun. Mass Spectrom. 16, 2298-2305. [Pg.176]

An interesting idea was to use a monolith column to perform dual functions of online SPE and chromatographic separation. Because of the porous structure of a monolith column and its very low backpressure, plasma or diluted plasma can be directly injected. Plumb et al. (2001) used this approach to quantitate an isoquinoline drug and 3 -azido-3 -deoxy thymidine (AZT). Diluted plasma samples (plasma water 1 1) were injected directly into a Chromolith Speed ROD RP-18e column... [Pg.284]

To improve chromatographic separation, another analytical column could be used in addition to the monolith (Xu et al. 2006). The monolith column served as an extraction column only. Hsieh et al. (2000, 2002) utilized a polymer-coated mixed function (PCMF) Capcell C8 column (4.6 x 50 mm, Phenomenex) to provide dual functions—online plasma extraction and analyte separation. The silica was coated with a polymer containing both hydrophilic polyoxythylene and hydrophobic groups. The diluted plasma samples (1 1 to 1 3) were injected directly. No column deterioration was observed after 200 injections. [Pg.285]

Asperger A. et al., 2002. Trace determination of priority pesticide in water by means of high-speed online solid-phase extraction-liquid chromatography-tandem mass spectrometry using turbulent-flow chromatography columns for enrichment and a short monolithic column for fast liquid chromatographic separation. J Chromatogr A 960 109. [Pg.293]

Hsieh Y. et al., 2003. Direct plasma analysis of drug compounds using monolithic column liquid chromatography and tandem mass spectrometry. Anal Chem 75 1812. [Pg.295]

Zeng H., Deng Y., and Wu J., 2003a. Fast analysis using monolithic columns coupled with high-flow online extraction and electrospray mass spectrometric detection for the direct and simultaneous quantitation of multiple components in plasma. J Chromatogr B 788 331. [Pg.297]

Monolithic column — The trend to use shorter columns in liquid chromatography means that the resultant lower separation efficiency is of concern. One way to improve HPLC separation efficiency on a shorter column is to reduce the size of the packing material, but at the cost of increased backpressure. Another approach to improve performance is increasing permeability with a monolithic column. Such a column consists of one solid piece with interconnected skeletons and flow paths. The single silica rod has abimodal pore structure with macropores for through-pore flow and mesopores for nanopores within a silica rod8182 (Figure 12.1). [Pg.325]


See other pages where Monolithic columns using is mentioned: [Pg.6]    [Pg.171]    [Pg.25]    [Pg.30]    [Pg.236]    [Pg.96]    [Pg.161]    [Pg.349]    [Pg.187]    [Pg.6]    [Pg.171]    [Pg.25]    [Pg.30]    [Pg.236]    [Pg.96]    [Pg.161]    [Pg.349]    [Pg.187]    [Pg.83]    [Pg.380]    [Pg.237]    [Pg.240]    [Pg.732]    [Pg.106]    [Pg.139]    [Pg.147]    [Pg.148]    [Pg.152]    [Pg.157]    [Pg.164]    [Pg.173]    [Pg.24]    [Pg.24]    [Pg.146]    [Pg.257]    [Pg.259]    [Pg.259]    [Pg.270]    [Pg.272]    [Pg.284]    [Pg.284]    [Pg.303]    [Pg.315]    [Pg.325]   
See also in sourсe #XX -- [ Pg.97 ]




SEARCH



Column Use

© 2024 chempedia.info