Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Column Use

The following operating guides are recommended for maintaining reversed-phase columns. Consult other references2,3 or the vendor s column instructions for other column types and for special precautions or column regeneration guides. [Pg.117]


Kayihan, F., Optimum Distribution of Heat Load in Distillation Columns Using Intermediate Condensers and Reboilers, AfC/iS Symp. Ser., 192(76) 1, 1980. [Pg.354]

Fig. 3. One simulated projection of the simulated object with different level of noise (left column) a) 0.0, b) 0.05, c) 0.1, d) 0.15, and the corresponding restored images (right column) using 5 projections. Fig. 3. One simulated projection of the simulated object with different level of noise (left column) a) 0.0, b) 0.05, c) 0.1, d) 0.15, and the corresponding restored images (right column) using 5 projections.
Removal of bases from mixtures of bases and neutral compounds. The procedure here is essentially the same as in (i) above. The base is retained by the column. Use a solution of 0 05 g. of benzylamine and o-i g. of mannitol in 100 ml. of water. The effluent contains only mannitol. [Pg.57]

A reduction column using a Zn amalgam as a reducing agent. [Pg.341]

A chromatographic analysis for the chlorinated pesticide Dieldrin gives a peak with a retention time of 8.68 min and a baseline width of 0.29 min. How many theoretical plates are involved in this separation Given that the column used in this analysis is 2.0 meters long, what is the height of a theoretical plate ... [Pg.554]

Another approach to improving resolution is to use thin films of stationary phase. Capillary columns used in gas chromatography and the bonded phases commonly used in HPLC provide a significant decrease in plate height due to the reduction of the Hs term in equation 12.27. [Pg.563]

An inexpensive column used to protect a more expensive analytical column. [Pg.579]

For most samples liquid-solid chromatography does not offer any special advantages over liquid-liquid chromatography (LLC). One exception is for the analysis of isomers, where LLC excels. Figure 12.32 shows a typical LSC separation of two amphetamines on a silica column using an 80 20 mixture of methylene chloride and methanol containing 1% NH4OH as a mobile phase. Nonpolar stationary phases, such as charcoal-based absorbents, also may be used. [Pg.590]

A column used to minimize the conductivity of the mobile phase in ion-exchange chromatography. [Pg.592]

This somewhat lengthy experiment provides a thorough introduction to the use of GG for the analysis of trace-level environmental pollutants. Sediment samples are extracted by sonicating with 3 X 100-mL portions of 1 1 acetone hexane. The extracts are then filtered and concentrated before bringing to a final volume of 10 mL. Samples are analyzed with a capillary column using a stationary phase of 5% phenylmethyl silicone, a splitless injection, and an EGD detector. [Pg.611]

An internal standard of 1-butanol is used to determine the concentrations of one or more of the following impurities commonly found in whiskey acetaldehyde, methanol, ethyl acetate, 1-propanol, 2-methyl-1-propanol, acetic acid, 2-methyl-1-butanol and 3-methyl-1-butanol. A packed column using 5% Garbowax 20m on 80/120 Garbopak B and an EID detector were used. [Pg.611]

Jones reductor a reduction column using a Zn amalgam as a reducing agent, (p. 341)... [Pg.774]

Fig. 12. Tryptic map of it-PA (mol wt = 66,000) showing peptides formed from hydrolysis of reduced, alkylated rt-PA. Separation by reversed-phase octadecyl (C g) column using aqueous acetonitrile with an added acidic agent to the mobile phase. Arrows show the difference between A, normal, and B, mutant rt-PA where the glutamic acid residue, D, has replaced the normal arginine residue, C, at position 275. Fig. 12. Tryptic map of it-PA (mol wt = 66,000) showing peptides formed from hydrolysis of reduced, alkylated rt-PA. Separation by reversed-phase octadecyl (C g) column using aqueous acetonitrile with an added acidic agent to the mobile phase. Arrows show the difference between A, normal, and B, mutant rt-PA where the glutamic acid residue, D, has replaced the normal arginine residue, C, at position 275.
The wet ester is distilled in the dehydration column using high reflux to remove a water phase overhead. The dried bottoms are distilled in the product column to provide high purity acrylate. The bottoms from the product column are stripped to recover values and the final residue incinerated. Alternatively, the bottoms maybe recycled to the ester reactor or to the bleed stripper. [Pg.154]

Pure dry reactants are needed to prevent catalyst deactivation effective inhibitor systems are also desirable as weU as high reaction rates, since many of the specialty monomers are less stable than the lower alkyl acrylates. The alcohol—ester azeotrope (8) should be removed rapidly from the reaction mixture and an efficient column used to minimize reactant loss to the distillate. After the reaction is completed, the catalyst may be removed and the mixture distilled to obtain the ester. The method is particularly useful for the preparation of functional monomers which caimot be prepared by direct esterification. [Pg.156]

Fig. 6. A comparison of k a values (51). Represented are 1, stirred bioreactor using water, = 0.02 m/s, kj a (eq. 16) 2, stirred bioreactor using water, t 3 = 0.04 m/s, kj a (eq. 16) 3, bubble column using water, kj a (eq. 18) 4, stirred bioreactor using salt water, = 0.02 m/s, kj a (eq. 17) 5, stirred bioreactor using salt water, = 0.04 m/s, kj a (eq. 17) and 6, bubble column using salt water (noncoalescing). Fig. 6. A comparison of k a values (51). Represented are 1, stirred bioreactor using water, = 0.02 m/s, kj a (eq. 16) 2, stirred bioreactor using water, t 3 = 0.04 m/s, kj a (eq. 16) 3, bubble column using water, kj a (eq. 18) 4, stirred bioreactor using salt water, = 0.02 m/s, kj a (eq. 17) 5, stirred bioreactor using salt water, = 0.04 m/s, kj a (eq. 17) and 6, bubble column using salt water (noncoalescing).
Sulfur hexafluoride may be analyzed chromatographicaHy using a molecular sieve or a Porapak QS column. Using an electron-capture detector, a sensitivity of 10 to lO " ppb is possible (51—53). [Pg.242]

Hplc techniques are used to routinely separate and quantify less volatile compounds. The hplc columns used to affect this separation are selected based on the constituents of interest. They are typically reverse phase or anion exchange in nature. The constituents routinely assayed in this type of analysis are those high in molecular weight or low in volatility. Specific compounds of interest include wood sugars, vanillin, and tannin complexes. The most common types of hplc detectors employed in the analysis of distilled spirits are the refractive index detector and the ultraviolet detector. Additionally, the recent introduction of the photodiode array detector is making a significant impact in the analysis of distilled spirits. [Pg.89]

Chromatographic conditions elution with 50 50 methanol/water solvent at the rate of 1.5 ml,/min through a DuPont Zorbax ODS column using a Waters R-401 Refractive Index Detector. [Pg.147]

Having wide and increasing quantity of RP HPLC sorbents in disposal the main question in RP HPLC is their interchangeability. Column chai acteristics that ai e usually described by their manufacturers are not full enough for the analytic to choose a suitable column for the specified resolutions or he ought to choose other similar column used before. In fact, nomenclature of reversed-phase stationai y phases is too unsophisticated and is a source of confusion in their application. [Pg.131]

After adequate analitical prepai ation according to standai d EPA method 608 samples were analysed gas chromatographic on a gas chromatograph 8500 Perkin Elmer, in glass and capilar columns using a capture electron detector and mass spectrometry, temperature program. [Pg.227]

HPLC analysis of anatoxin-a was first carried out by Astrachan and Archer, " who extracted the toxin from Anabaenaflos-aquae using chloroform followed by hydrochloric acid. The HPLC analysis was carried out on an ODS column using hypochlorate-methanol. Other systems used since include acetic acid extraction and analysis on a reversed-phase C g column using methanol-water mobile phase, and extraction in water after ultrasonication and analysis on reversed-phase... [Pg.118]


See other pages where Column Use is mentioned: [Pg.113]    [Pg.159]    [Pg.243]    [Pg.190]    [Pg.147]    [Pg.1103]    [Pg.613]    [Pg.773]    [Pg.774]    [Pg.246]    [Pg.48]    [Pg.523]    [Pg.77]    [Pg.546]    [Pg.378]    [Pg.97]    [Pg.11]    [Pg.306]    [Pg.41]    [Pg.98]    [Pg.110]    [Pg.173]    [Pg.194]    [Pg.4]    [Pg.11]    [Pg.111]   


SEARCH



Assay of Acid Phosphatase Using Mini-Ion Exchange Columns

Carbowax column surface deactivation using

Chromatographic Methods Using Chiral Columns

Chromatography columns used

Columns care and use

DESIGN OF COMPLEX COLUMNS USING COLUMN PROFILE MAPS

DESIGN OF SIMPLE COLUMNS USING COLUMN PROFILE MAPS

Distillation Sequencing Using Columns with More than Two Products

Distillation Sequencing Using Simple Columns

Gas chromatography columns used

Ion Exchange-Reversed-Phase 2D HPLC Using a Monolithic Column for the 2nd

Isocratic using short columns

Karr column, extraction using

Monolithic columns using

Parameters used in evaluating column performance

REACTIVE DISTILLATION DESIGN USING COLUMN PROFILE MAPS

Separation of Cobalt and Copper Using Two Different Polyamine Composites in Tandem Columns

Solution of Problems Involving Single Columns Used to Effect Azeotropic and Extractive Distillations

The van Deemter equation from reduced parameters and its use in column diagnosis

Understanding Distillation Using Column Profile Maps, First Edition. Daniel Beneke, Mark Peters

Use in capillary columns

Use in geotextile-encased granular columns

Use of Continuous Columns for Batch Distillation

Using Column Efficiency to Optimize Resolution

Using Column Selectivity to Optimize Resolution

Using Column Width and Row Height

Using Paste Special to Transpose Rows and Columns

Using Text to Columns

Using pre-columns

Which Columns Should Be Used, and How Do I Use Them

© 2024 chempedia.info