Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Micro definition

The transference of a liquid from one vessel to another is best carried out by means of a dropping pipette A (Fig. 30). For measuring out a definite volume of liquid it is obviously an advantage to have a calibrated pipette B (Fig. 30) of i or 5 ml. total capacity. Alternatively, semi-micro burettes reading to 0 02 ml. are particularly convenient for class work. [Pg.59]

The case is different again under micro-discontinuous (i.e. micro-cracked or micro-porous) chromium, on which a definite improvement in corrosion resistance can be achieved when copper is present under the nickel coating . [Pg.520]

Although we will stick to the IL-6 gene, it should be mentioned at the side that two other RNA polymerases exist in mammalian cells responsible for the synthesis of RNA molecules, which are not translated into proteins ribosomal (rRNA), transfer (tRNA), small nuclear (snRNA), small nucleolar (snoRNA), and some of the recently discovered microRNAs and piRNAs. These RNA molecules act in the process of translation and mRNA turnover. Micro and piRNAs are probably extremely important in the definition of stem cells and of differentiation programs. Some of them are synthesized by RNA polymerase II. [Pg.1225]

The definition of mini-channels and micro-channels has not been clearly and strictly established in the literature although many related studies have been done. For example, for compact heat exchangers, Mehendale et al. (1999) gave a relatively... [Pg.20]

Thus, the available data related to transition in circular micro-tubes testify to the fact that the critical Reynolds number, which corresponds to the onset of such transition, is about 2,000. The evaluation of critical Reynolds number in irregular micro-channels will entail great difficulty since this problem contains a number of characteristic length scales. This fact leads to some vagueness in definition of critical Reynolds number that is not a single criterion, which determines flow characteristics. [Pg.123]

The sub-micro level cannot easily be seen directly, and while its principles and components are currently accepted as tme and real, it depends on the atonuc theory of matter. The scientific definition of a theory can be emphasised here with the picture of the atom constantly being revised. As Silberberg (2006) points out, scientists are confident about the distribution of electrons but the interactions between protons and neutrons within the nucleus are still on the frontier of discovery (p. 54). This demorrstrates the dynamic and exciting nature of chemistry. Appreciating this overview of how scierrtific ideas are developing may help students to expand their epistemology of science. [Pg.173]

Methane, See also Liquefied natural gas Natural gas, 41, 47, 258, 291, 484 physical properties, 295 vapour pressure, 294 Micro-organisms, 1, 138 Mineral acids, 27, 28 Mineral oils, 15, 159, 166 Mists, See also Aerosols definition, 14 origin, 51... [Pg.604]

As surface area and pore structure are properties of key importance for any catalyst or support material, we will first describe how these properties can be measured. First, it is useful to draw a clear borderline between roughness and porosity. If most features on a surface are deeper than they are wide, then we call the surface porous (Fig. 5.16). Although it is convenient to think about pores in terms of hollow cylinders, one should realize that pores may have all kinds of shapes. The pore system of zeolites consists of microporous channels and cages, whereas the pores of a silica gel support are formed by the interstices between spheres. Alumina and carbon black, on the other hand, have platelet structures, resulting in slit-shaped pores. All support materials may contain micro, meso and macropores (see text box for definitions). [Pg.182]

Numbering-up can be performed in two ways (Figure 1.4). External numhering-up is referred to as the connection of many devices in a parallel fashion [8] (a similar, but less elaborate, definition was already provided in [9, 10] see also [11] for a realized industrial example). A device in the sense as it is used here is defined as a functional element, e.g. a micro-mixing flow configuration such as an interdigital... [Pg.6]

Hence chemical micro processing may also be applied for purposes other than PI, e.g. screening, which is not related to production and, accordingly, does not fall into the category of process intensification (see the definition given above). [Pg.14]

The main aims of MicroChemTec are the development of a unit construction kit for micro reactors, definition of standardized interfaces, investigations of modules on the market for their suitability for affiliation in the unit construction kit, documentation for this purpose, and demonstration of functioning of the concept with the example of selected unit operations or processes. [Pg.22]

In order to exemplify the potential of micro-channel reactors for thermal control, consider the oxidation of citraconic anhydride, which, for a specific catalyst material, has a pseudo-homogeneous reaction rate of 1.62 s at a temperature of 300 °C, corresponding to a reaction time-scale of 0.61 s. In a micro channel of 300 pm diameter filled with a mixture composed of N2/02/anhydride (79.9 20 0.1), the characteristic time-scale for heat exchange is 1.4 lO" s. In spite of an adiabatic temperature rise of 60 K related to such a reaction, the temperature increases by less than 0.5 K in the micro channel. Examples such as this show that micro reactors allow one to define temperature conditions very precisely due to fast removal and, in the case of endothermic reactions, addition of heat. On the one hand, this results in an increase in process safety, as discussed above. On the other hand, it allows a better definition of reaction conditions than with macroscopic equipment, thus allowing for a higher selectivity in chemical processes. [Pg.39]

Many pubhcahons refer to the use of micro reactors for process intensificahon, with all the imphcahons related to this definition - safety, cost reduchon, high productivity rate, environmental friendliness, energy efficiency and so on [5, 25, 104]. A particular feature of interest is the reduction of the equipment size (see also Section 1.4.3.5 for a systematic top-down description of this topic). [Pg.57]

Rinard dedicated his research to a detailed analysis of methodological aspects of a micro-reactor plant concept which he also termed mini-plant production [85] (see also [4, 9, 10] for a commented, short description). Important criteria in this concept are JIT (Just-in-time) production, zero holdup, inherent safety, modularity and the KISS (keep it simple, stupid) principle. Based on this conceptual definition, Rinard describes different phases in plant development. Essential for his entire work is the pragmatic way of finding process solutions, truly of hybrid character ]149] (miniaturization only where really needed). Recent investigations are concerned with the scalability of hybrid micro-reactor plants and the limits thereof ]149], Expliddy he recommends jointly using micro- and meso-scale components. [Pg.65]

However, these investigations also point out that we need a proper definition of space-time yields for micro reactors. This refers to defining what essentially the reaction volume of a micro reactor is. Here, different definitions lead to varying values of the respective space-time yields. Following another definition of this parameter for ethylene oxide formation, a value of only 0.13 t h m is obtained -still within the industrial window [159, 162, 163]. [Pg.71]

Keeping in mind the controversial discussion on new physics in micro reactors [198], we certainly have to be at least as careful when introducing or claiming essentially novel chemical processes. A thorough scientific consideration is required for an exact definition and differentiation here that is beyond the scope of this book. So far, no deep-rooted scientific work has been published analyzing the origin of the novelty of chemistry under micro-channel processing conditions. [Pg.77]

Fine-chemical companies have definitely shown interest in micro-reaction technology (see also the commitment in [137]) and have formed their own task forces for this purpose. The increasing number of patents is further proof of the beginning commercial use of micro reactors (see, e.g., [318-321]). [Pg.103]

GP 2] [R 2] The definition of space-time yield in a micro reactor depends on the definition of the reactor volume . Owing to the large amoimt of construction material relative to the reaction channels and the neglect of some reactor parts ( abstraction to the real reaction zone ), several more or less useful definitions can be made. In the following, two definitions concerning the time yield divided by the pure reaction channel volume and the platelet volume were used. [Pg.307]

The precise definition of residence times for various stages of reactions by introducing reactants in a spatially confined manner in micro flow devices allows new ways... [Pg.531]

GL 18] ]R 6a]]P 17/Using the same experimental conditions and catalysts with the same geometric surface area, the performance of micro-channel processing was compared with that of a fixed-bed reactor composed of short wires [17]. The conversion was 89% in the case of the fixed bed the micro channels gave a 58% yield. One possible explanation for this is phase separation, i.e. that some micro channels were filled with liquids only, and some with gas. This is unlikely to occur in a fixed bed. Another explanation is the difference in residence time between the two types of reactors, as the fixed bed had voids three times larger than the micro channel volume. It could not definitively be decided which of these explanations is correct. [Pg.630]

To give a thorough, rational review of the field of chemical micro-process technology itself, one ideally would like to follow a deductive analysis route, pursuing a bottom-up approach. First, one may provide a definition of micro reactors, then search for the impacts on the engineering of chemical processes, and try to propose routes for exploitation, i.e. applications. Alternatively, for a less comprehensive, but more in-depth description, one could use a top-dovm approach starting with a selected application and try to design an ideal micro reactor for this. [Pg.711]

Although these studies utilizing Incorporated debris are valuable because they show the potential for allelochemlcals to be released from plant litter, they suffer from a disadvantage. The amount of debris added and Its carbon to nitrogen ratio might lead to alterations In nutrient contents In the soil as the result of proliferation or shifts In populations of micro-organisms. Thus, a control In which a material of similar C/N ratio but lacking allelochemlcals needs to be Included for such studies to be conclusive. The above studies did not Include such controls and thus are not definitive. [Pg.165]

Only in a few cases are test samples measurable without any treatment. As a rule, test samples have to be transformed into a measurable form that optimally corresponds to the demands of the measuring technique. Therefore, sample preparation is a procedure that converts a test sample into a measuring sample. Whereas test samples represent the material in its original form, measuring samples embodies a form that is able to interact with the measuring system in an optimum way. In this sense, measuring samples can be solutions, extracts, pellets, and melt-down samples, but also definite surface layers and volumes in case of micro- and nanoprobe techniques. [Pg.50]

The definition of osteoporosis is (NIH 2000) A systemic skeletal disease characterized by low bone mass and micro architectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture . [Pg.68]

A few other official antibiotics in BP (1993) may also be assayed by adopting the method stated above, but using specific micro-organism, definite final pH of the medium, pH of the phosphate buffer, potency of solution (U per ml) and the incubation temperature. A few typical examples are given in Table 20.1 below ... [Pg.288]


See other pages where Micro definition is mentioned: [Pg.209]    [Pg.441]    [Pg.160]    [Pg.451]    [Pg.21]    [Pg.178]    [Pg.187]    [Pg.187]    [Pg.110]    [Pg.2]    [Pg.4]    [Pg.16]    [Pg.17]    [Pg.31]    [Pg.51]    [Pg.70]    [Pg.257]    [Pg.711]    [Pg.235]    [Pg.348]    [Pg.577]    [Pg.107]    [Pg.115]   
See also in sourсe #XX -- [ Pg.3 ]




SEARCH



Definition of macro- and micro-mixing

© 2024 chempedia.info