Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Channel, microporous

Gonradsson, T., Dadachov, M.S., and Zou, X.D. (2000) Synthesis and structure of (Me3N)6[Ge32064](H20)4.5, a thermally stable novel zeotype with 3D interconnected 12-ring channels. Micropor. Mesopor. Mat., 41, 183-191. [Pg.58]

With typical values of Egpp equal to 15 kJ/mol (H2) and 10 kJ/mol (CO2) and typical values of Qg equal to 6 (H2) and 23 kJ/mol (CO2) [63] the resulting calculated activation energies of the intra channel (micropore) diffusion are about 21 kJ/mol for H2 and 32 kJ/mol CO2 [59,93]. This is in accordance with the expectation that larger molecules will have a larger activation energy for diffusion than smaller ones [92,82]. [Pg.398]

Sebastian, V., de la Iglesia, O., Mallada, R. et al. (2008) Preparation of zeolite films as catalytic coatings on microreactor channels. Microporous and Mesoporous Materials, 115,147-155. [Pg.248]

Zou RQ, Yamada Y, Xu Q. Diamondoid metal-organic framework of Zinc(II) urocanate with onedimensional open channels. Micropor Mesopor Mater 2006 91 233-7. [Pg.108]

The channels in zeoHtes are only a few molecular diameters in size, and overlapping potential fields from opposite walls result in a flat adsorption isotherm, which is characterized by a long horizontal section as the relative pressure approaches unity (Fig. 6). The adsorption isotherms do not exhibit hysteresis as do those in many other microporous adsorbents. Adsorption and desorption are reversible, and the contour of the desorption isotherm foUows that of adsorption. [Pg.447]

Microporous catalysts are heterogeneous catalysts used in catalytic converters and for many other specialized applications, because of their very large surface areas and reaction specificity. Zeolites, for example, are microporous aluminosilicates (see Section 14.19) with three-dimensional structures riddled with hexagonal channels connected by tunnels (Fig. 13.38). The enclosed nature of the active sites in zeolites gives them a special advantage over other heterogeneous catalysts, because an intermediate can be held in place inside the channels until the products form. Moreover, the channels allow products to grow only to a particular size. [Pg.687]

As surface area and pore structure are properties of key importance for any catalyst or support material, we will first describe how these properties can be measured. First, it is useful to draw a clear borderline between roughness and porosity. If most features on a surface are deeper than they are wide, then we call the surface porous (Fig. 5.16). Although it is convenient to think about pores in terms of hollow cylinders, one should realize that pores may have all kinds of shapes. The pore system of zeolites consists of microporous channels and cages, whereas the pores of a silica gel support are formed by the interstices between spheres. Alumina and carbon black, on the other hand, have platelet structures, resulting in slit-shaped pores. All support materials may contain micro, meso and macropores (see text box for definitions). [Pg.182]

Zeolites form a unique class of oxides, consisting of microporous, crystalline aluminosilicates that can either be found in nature or synthesized artificially [J.M. Thomas, R.G. Bell and C.R.A. Catlow in Handbook of Heterogeneous Catalysis (Ed. G. Ertl, H. Knbzinger and J. Weitkamp) (1997), Vol. 1, p. 206, VCH, Weinheim.]. The zeolite framework is very open and contains channels and cages where cations, water and adsorbed molecules may reside and react. The specific absorption properties of zeolites are used in detergents, toothpaste, and desiccants, whereas their acidity makes them attractive catalysts. [Pg.199]

Summarizing, the in situ UV-Vis, XANES, and EXAFS studies of Bonino et al. [49] and of Prestipino et al. [50] on hydrated and anhydrous peroxo/hy-droperoxo complexes on crystalhne microporous and amorphous meso-porous titanosilicates have shown, for the first time, the equilibriiun between r] side-on and end-on complexes. The amount of water is the key factor in the equilibrium displacement. In this regard please note that, owing to the hydrophobic character of TS-1, substrates such as olefins are the dominant species in the channels. This fact assures a relatively local low concentration of water, which in turn guarantees a sufficient presence of the active end-on... [Pg.64]

Version (b) has a four-channel flow guidance that encompasses two mixing tees in two simple mixing tees (Figure 4.5) [8]. An example of this function is the flow guidance for the Michael addition. In a first step, the base and 1,3-dicarbonyl compound streams merge. The enolate stream thus formed is then mixed with the Michael acceptor. Microporous silica frits are set into the channels to minimize... [Pg.383]

Zeolites have ordered micropores smaller than 2nm in diameter and are widely used as catalysts and supports in many practical reactions. Some zeolites have solid acidity and show shape-selectivity, which gives crucial effects in the processes of oil refining and petrochemistry. Metal nanoclusters and complexes can be synthesized in zeolites by the ship-in-a-bottle technique (Figure 1) [1,2], and the composite materials have also been applied to catalytic reactions. However, the decline of catalytic activity was often observed due to the diffusion-limitation of substrates or products in the micropores of zeolites. To overcome this drawback, newly developed mesoporous silicas such as FSM-16 [3,4], MCM-41 [5], and SBA-15 [6] have been used as catalyst supports, because they have large pores (2-10 nm) and high surface area (500-1000 m g ) [7,8]. The internal surface of the channels accounts for more than 90% of the surface area of mesoporous silicas. With the help of the new incredible materials, template synthesis of metal nanoclusters inside mesoporous channels is achieved and the nanoclusters give stupendous performances in various applications [9]. In this chapter, nanoclusters include nanoparticles and nanowires, and we focus on the synthesis and catalytic application of noble-metal nanoclusters in mesoporous silicas. [Pg.383]

Molecular sieves (zeolites) are artificially prepared aluminosilicates of alXali metals. The most common types for gas chromatography are molecular sieve 5A, a calcium aluminosilicate with an effective pore diameter of 0.5 nm, and molecular sieve 13X, a sodium aluminosilicate with an effective pore diameter of 1 nm. The molecular sieves have a tunnel-liXe pore structure with the pore size being dependent on the geometrical structure of the zeolite and the size of the cation. The pores are essentially microporous as the cross-sectional diameter of the channels is of similar dimensions to those of small molecules. This also contrilsutes to the enormous surface area of these materials. Two features primarily govern retention on molecular sieves. The size of the analyte idiich determines whether it can enter the porous... [Pg.109]

Ghosh [548] used cellulose nitrate microporous filters (500 pm thick) as scaffold material to deposit octanol into the pores and then under controlled pressure conditions, displace some of the oil in the pores with water, creating a membrane with parallel oil and water pathways. This was thought to serve as a possible model for some of the properties of the outermost layer of skin, the stratum comeum. The relative proportions of the two types of channel could be controlled, and the properties of 5-10% water pore content were studied. Ibuprofen (lipophilic) and antipyr-ine (hydrophilic) were model drugs used. When the filter was filled entirely with water, the measured permeability of antipyrine was 69 (in 10 6 cm/s) when 90% of the pores were filled with octanol, the permeability decreased to 33 95% octanol content further decreased permeability to 23, and fully octanol-filled filters indicated 0.9 as the permeability. [Pg.128]

Nitrogen adsorption/desorption isotherms on Zeolite and V-Mo-zeolite are very similar and close to a type I characteristic of microporous materials, although the V-Mo-catalysts show small hysterisis loop at higher partial pressures, which reveals some intergranular mesoporosity. Table 1 shows that BET surface area, microporous and porous volumes, decrease after the introduction of Molybdenum and vanadium in zeolite indicating a textural alteration probably because of pore blocking by vanadium or molybdenum species either dispersed in the channels or deposited at the outer surface of the zeolite. The effect is far less important for the catalysts issued from ZSM-5. [Pg.130]

A new composite containing montmorillonite and zeolite Beta is prepared by in situ crystallization. Nano-zeolite Beta grows on montmorillonite. The composite possesses a dual system of micropore, originated from zeolite Beta, and mesopore of size around 50nm, due to the abundance of interspace formed by montmorillonite laminaes. Compared with catalyst MoNi/Beta, more i-C8 is produced on catalyst MoNi/composite, when n-Cg is used for feedstock for hydroisomerization. This results from the high diffusion created by composite and the short channel of nano-size zeolite Beta. [Pg.140]

We have observed large variations in the sorption capacities of zeolite samples characterized by (ID) channel systems, as for instance AFI (AIPO4-5 zeolite) and MTW (ZSM-12 zeolite) architectural framework types. Indeed, for such unconnected micropore networks, point defects or chemisorbed impurities can annihilate a huge number of sorption sites. Detailed analysis, by neutron diffraction of the structural properties of the sorbed phase / host zeolite system, has pointed out clear evidence of closed porosity existence. Percentage of such an enclosed porosity has been determined. [Pg.161]

Figure 1 shows a sharp decrease of low-pressure hysteresis loop when introducing copper in S-l, pointing to the formation of (CuO)n nanoclusters into the S-l intracrystalline channels and supermicropores. The adsorption data analysis (see Table 1) shows a decrease of both the total (BET) surface area and micropore volume of the CuS-1 sample with respect to the S-l matrix. [Pg.175]

These microporous crystalline materials possess a framework consisting of AIO4 and SiC>4 tetrahedra linked to each other by the oxygen atoms at the comer points of each tetrahedron. The tetrahedral connections lead to the formation of a three-dimensional structure having pores, channels, and cavities of uniform size and dimensions that are similar to those of small molecules. Depending on the arrangement of the tetrahedral connections, which is influenced by the method used for their preparation, several predictable structures may be obtained. The most commonly used zeolites for synthetic transformations include large-pore zeolites, such as zeolites X, Y, Beta, or mordenite, medium-pore zeolites, such as ZSM-5, and small-pore zeolites such as zeolite A (Table I). The latter, whose pore diameters are between 0.3... [Pg.31]


See other pages where Channel, microporous is mentioned: [Pg.624]    [Pg.150]    [Pg.223]    [Pg.624]    [Pg.150]    [Pg.223]    [Pg.2780]    [Pg.1]    [Pg.292]    [Pg.443]    [Pg.443]    [Pg.311]    [Pg.574]    [Pg.171]    [Pg.33]    [Pg.60]    [Pg.411]    [Pg.383]    [Pg.383]    [Pg.1177]    [Pg.277]    [Pg.124]    [Pg.210]    [Pg.17]    [Pg.89]    [Pg.173]    [Pg.323]    [Pg.347]    [Pg.383]    [Pg.374]    [Pg.455]    [Pg.35]    [Pg.303]   
See also in sourсe #XX -- [ Pg.210 ]




SEARCH



© 2024 chempedia.info