Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Geometric surface area

When a battery produces current, the sites of current production are not uniformly distributed on the electrodes (45). The nonuniform current distribution lowers the expected performance from a battery system, and causes excessive heat evolution and low utilization of active materials. Two types of current distribution, primary and secondary, can be distinguished. The primary distribution is related to the current production based on the geometric surface area of the battery constmction. Secondary current distribution is related to current production sites inside the porous electrode itself. Most practical battery constmctions have nonuniform current distribution across the surface of the electrodes. This primary current distribution is governed by geometric factors such as height (or length) of the electrodes, the distance between the electrodes, the resistance of the anode and cathode stmctures by the resistance of the electrolyte and by the polarization resistance or hinderance of the electrode reaction processes. [Pg.514]

An effectiveness value greater than one indicates that the porous electrode is more effective than an electrode of the same geometric surface area, and that the reaction extends into the porous electrode stmcture. [Pg.515]

Fig. 9. Discharge and charging curves for a sintered iron electrode at a constant current of 0.2 A where the apparent geometrical surface area is 36 cm and porosity is 65%. A and B represent the discharging and charging regions, respectively. Overall electrode reactions, midpoint potentials, and, in parentheses, theoretical potentials at pH 15 ate Al, n-Fe + 2 OH Fe(OH)2 + 2, 0.88 V (1.03 V) B, Fe(OH)2 FeOOH + H+ +, 0.63 V (0.72 V) C,... Fig. 9. Discharge and charging curves for a sintered iron electrode at a constant current of 0.2 A where the apparent geometrical surface area is 36 cm and porosity is 65%. A and B represent the discharging and charging regions, respectively. Overall electrode reactions, midpoint potentials, and, in parentheses, theoretical potentials at pH 15 ate Al, n-Fe + 2 OH Fe(OH)2 + 2, 0.88 V (1.03 V) B, Fe(OH)2 FeOOH + H+ +, 0.63 V (0.72 V) C,...
Catalytic Support Body Monolithic Honeycomb Unit. The terms substrate and brick are also used to describe the high geometric surface area material upon which the active coating material is placed. Monolithic honeycomb catalytic support material comes in both ceramic and metallic form. Both are used in automobile catalysts and each possesses unique properties. A common property is a high geometric surface area which is inert and does not react with the catalytic layer. [Pg.486]

The precious metal or metal oxide imparts high intrinsic activity, the carrier provides a stable, high surface area for catalyst dispersion, and the mechanical support gives a high geometric surface area for physical support and engineering design features (20). Only the correct combination of these... [Pg.502]

The advanced all-metallic catalysts are believed to be formed by bonding active copper-nickel alloys onto stainless steel wires. Under the scanning electron microscope, it appears that the surface area may be more than twenty times the geometric surface area (42) ... [Pg.81]

The other important factor is a, the geometric surface area exposed to gas per volume of reactor, which depends on the void fraction and the dimension of the packing. The product of the transfer coefficient and the surface-to-volume ratio governs the rate of heat and mass transfer per... [Pg.102]

Control of emissions of CO, VOC, and NOj, is high on the agenda. Heterogeneous catalysis plays a key role and in most cases structured reactors, in particular monoliths, outperform packed beds because of (i) low pressure drop, (ii) flexibility in design for fast reactions, that is, thin catalytic layers with large geometric surface area are optimal, and (iii) attrition resistance [17]. For power plants the large flow... [Pg.191]

Studies performed on CdS [282, 283] have revealed the importance of the microstructure, i.e., crystal structure, crystallite size, and geometrical surface area, in both the control of band structure and the concentration and mobility of charges, in relation to the photocatalytic performance of the photocatalyst. It has been shown also that the solubility product of CdS colloids prepared from acetate buffer aqueous solutions of suitable precursors increases from 7.2x 10 for large particles to about 10 for small (< 2.5 nm) particle colloids, this increase invoking a positive shift on the cathodic corrosion potential [284]. [Pg.277]

The kinetics of this reaction are relatively slow (io from 10 to lO" A cm- referred to the geometric surface area, depending on the degree of dispersion of the platinum catalyst), which is the main cause of the high... [Pg.93]

GL 18] ]R 6a]]P 17/Using the same experimental conditions and catalysts with the same geometric surface area, the performance of micro-channel processing was compared with that of a fixed-bed reactor composed of short wires [17]. The conversion was 89% in the case of the fixed bed the micro channels gave a 58% yield. One possible explanation for this is phase separation, i.e. that some micro channels were filled with liquids only, and some with gas. This is unlikely to occur in a fixed bed. Another explanation is the difference in residence time between the two types of reactors, as the fixed bed had voids three times larger than the micro channel volume. It could not definitively be decided which of these explanations is correct. [Pg.630]

GL 18] [R 6a] [P 17] A sol-gel deposited catalyst used in a fixed-bed reactor gave higher conversion than a micro-channel catalyst impregnated on a porous alumina layer [17]. This was due to the higher geometric surface area of the sol-gel deposited catalyst. [Pg.631]

In industrial electrochemical cells (electrolyzers, batteries, fuel cells, and many others), porous metallic or nonmetallic electrodes are often used instead of compact nonporous electrodes. Porous electrodes have large trae areas, S, of the inner surface compared to their external geometric surface area S [i.e., large values of the formal roughness factors y = S /S (parameters yand are related as y = yt()]. Using porous electrodes, one can realize large currents at relatively low values of polarization. [Pg.337]

Of direct interest for biofuel cell applications are the reported reduction of O2 by multi-copper oxidases on carbon nanotube electrodes [Yan et al., 2006 Zheng et al., 2006] and the oxidation of H2 by hydrogenase covalently bound to carbon nanotubes [Alonso-Lomillo et al., 2007]. The hydrogenase/nanotube anode is extremely stable (>1 month), and shows 33-fold enhanced enzyme coverage compared with similarly treated graphite of the corresponding geometric surface area. A. vinosum... [Pg.627]

Po saturation pressure or pressure at Sx gross geometric surface area of cata-... [Pg.576]

An impurity in a water stream at a very small concentration is to be removed in a charcoal trickle bed filter. The filter is in a cylindrical column that is 2 ft in diameter, and the bed is 4 ft deep. The water is kept at a level that is 2 ft above the top of the bed, and it trickles through by gravity flow. If the charcoal particles have a geometric surface area to volume ratio of 48 in.-1 and they... [Pg.409]

It is of interest to determine the extent to which there is flow through the interior holes of the particles, as the reaction activity is proportional to geometric surface area under these conditions. So, it is important to know whether the extra surface area provided by the holes is accessible to the flow. It is not easy to see this internal flow from the path lines in Fig. 25, although there appears to be flow through the center particle. To determine this more clearly we constructed a surface that passed through the midpoint of the center particle, perpendicular to its axis, for each of the particle geometries. This is shown as the dark square in Fig. 26, which illustrates the results for the 4-hole particle. [Pg.369]

Steam reforming is a heterogeneously catalyzed process, with nickel catalyst deposited throughout a preformed porous support. It is empirically observed in the industry, that conversion is proportional to the geometric surface area of the catalyst particles, rather than the internal pore area. This suggests that the particle behaves as an egg-shell type, as if all the catalytic activity were confined to a thin layer at the external surface. It has been demonstrated by conventional reaction-diffusion particle modelling that this behaviour is due to... [Pg.372]

In conclusion, these data do not allow concluding whether or not Titania nanotubes form better catalysts due to their intrinsic nanostructure, and not simply because they have a high geometrical surface area and provide a good dispersion of supported catalysts. These properties may be found in other Titania based catalysts not having a ID nanostructure. On the other hand, it is also clear from above comments that most of the studies up to now were justified essentially from the curiosity to use a novel support more than from the rational design of advanced catalysts, which use the metal oxide nanostructure as a key component to develop... [Pg.380]

The pores of zeolites can be regarded as extensions of their surfaces zeolites have an external surface, i.e., the surface of the zeolite crystallites, and an internal surface, i.e., the surface of their channels and/or cages. In total, the surface areas of zeolites are remarkably large. One gram of a typical Faujasite zeolite expresses a geometric surface area of about 1100 m2/g (specific surface area). The contribution of the external surface area to this number is almost negligible (about 5 m2 g 1 for 1 pm crystallites), and almost the complete surface area is due to the surface of the micropores. [Pg.100]


See other pages where Geometric surface area is mentioned: [Pg.63]    [Pg.347]    [Pg.485]    [Pg.486]    [Pg.486]    [Pg.486]    [Pg.506]    [Pg.124]    [Pg.85]    [Pg.47]    [Pg.187]    [Pg.241]    [Pg.199]    [Pg.20]    [Pg.21]    [Pg.21]    [Pg.84]    [Pg.479]    [Pg.372]    [Pg.184]    [Pg.257]    [Pg.319]    [Pg.416]    [Pg.12]    [Pg.12]    [Pg.639]    [Pg.194]    [Pg.431]    [Pg.367]    [Pg.385]    [Pg.379]   
See also in sourсe #XX -- [ Pg.104 ]

See also in sourсe #XX -- [ Pg.629 ]




SEARCH



Geometric surface

Geometrical surface area

Geometrical surface area

Specific surface area geometric

© 2024 chempedia.info