Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methyl ethers properties

Synonyms Dimethylsiloxane-ethylene oxide block copolymer 2-[Melhoxy (polyelh-yleneoxy) propyl] heplamelhyltrisiloxane Poly [dimelhylsiloxane-co-melhyl (3-hydroxypropyl) siloxane-graft-poly (ethylene glycol) methyl ether Properties Sp.gr. 1.035 m.p. -14 C flash pt. > 109 C Toxicology Irritating to eyes, skin, respiratory system may be harmful by inh., ing., or skin absoq). [Pg.2090]

Both of the alkaloids anhalamine (62) from l ophophora williamsii and lophocerine (63) from l ophocereus schotti were isolated (after the properties of purified mescaline had been noted) in the search for materials of similar behavior. Interestingly, lophocerine, isolated as its methyl ether, after dia2omethane treatment of the alkaU-soluble fraction of total plant extract, is racemic. It is not known if the alkaloid in the plant is also racemic or if the isolation procedure causes racemization. [Pg.541]

The physical properties of finish removers vary considerably due to the diverse uses and requirements of the removers. Finish removers can be grouped by the principal ingredient of the formula, method of appHcation, method of removal, chemical base, viscosity, or hazardous classification. Except for method of apphcation, a paint remover formulation usually has one aspect of each group, by which it can be used for one or more appHcations. A Hst of the most common organic solvents used in finish removers has been compiled (3). Many are mentioned throughout this article others include ethyl lactate [97-64-3] propylene carbonate [108-32-7] furfural alcohol [98-01-1/, dimethyl formamide [68-12-2] tetrahydrofuran [109-99-9] methyl amyl ketone [110-43-0] dipropylene glycol methyl ether [34590-94-8] and Exxate 600, a trade name of Exxon Chemicals. [Pg.550]

In addition to MTBE, two other ethers commonly used as fuel additives ate /n/f-amyl methyl ether (TAME) and ethyl in/f-butyl ether [637-92-3] (ELBE). There ate a number of properties that ate important in gasoline blending (see Gasoline and OPHER MOTOR fuels) (Table 3). [Pg.425]

Phaeanthine, C3JH42O0N2. (Item 8 list, p. 350.) This alkaloid was isolated by Santos.It has m.p. 210°, [a]u°° — 278° (CHCI3), yields a hydriodide, m.p. 268°, picrate, m.p. 263°, aurichloride, m.p. 170-1°, and a platinichloride, m.p. 280° (dec.), and contains four methoxyl and two methylimino groups. By the Hofmann degradation process it yields an optically inactive methine base A, m.p. 173°, which is oxidised by potassium permanganate in acetone to 2-methoxy-5 4 -dicarboxydiphenyl ether (p. 348). A comparison of the properties of phseanthine and tetrandrine by Kondo and Keimatsu indicates that these two alkaloids are optical antipodes, so that phseanthine will be represented by either (XXXIX) or (XL) as given on p. 348, 1 and of these two formula (R = Me) one must represent oxyacanthine methyl ether and the other berbamine methyl ether (centres of asymmetry d- and 1-) tetrandrine (centres of asymmetry both d-) and phseanthine (centres of asymmetry both 1-). [Pg.356]

Oxygen was added as oxygenated hydrocarbon components methyl tert-butyl ether (MTBE), tert-amyl methyl ether (TAME), ethyl tert-butyl ether (ETBE), di-isopropyl ether (DIPE), ethanol, methanol, and tertiary butyl alcohol (TBA). The properties of oxygenates, as they relate to gasoline blending, are shown in Table 10-1. [Pg.312]

The product has the following spectral properties infrared (KBr) cm.-1 3103 and 3006 (aromatic C—H), 2955, 2925, and 2830 (aliphatic C—H stretching), 1257 and 1032 (aromatic methyl ether), 841 and 812 (C—H out-of-plane bending of isoxazole C4—H and 4-substituted phenyl) proton magnetic resonance (trifluoroaeetic acid) 5, multiplicity, number of protons, assignment 3.98 (singlet,... [Pg.41]

Trost et al 1 have observed product distribution to be dependent in part on the steric and electronic properties of the substrate. For example, linear enyne 48 (Equation (30)) cyclized exclusively to the Alder-ene product 49, whereas branching at the allylic position led to the formation of 1,3-diene 50 (Equation (31)) under similar conditions. Allylic ethers also give 1,3-dienes this effect was determined not to be the result of chelation, as methyl ethers and tert-butyldimethylsilyl ethers both gave dialkylidene cyclopentanes despite the large difference in coordinating ability. [Pg.570]

In this article, the authors have endeavored to summarize the methods of synthesis and the proofs of constitution of all the known methyl ethers of D-glucopyranose and D-glucofuranose. Acyclic glucose ethers are not considered in this review. Later articles will deal with monosaccharides other than glucose. It has not been possible to discuss in full all the reactions involved, but to offset this disadvantage the bibliography has been made as complete as possible and tables have been compiled of the physical properties of the methyl-D-glucoses and of their more important derivatives. [Pg.159]

Kayukawa et al. [17] studied the PVT properties of triiluoromethyl methyl ether, because it is a possible refrigerant with zero ozone depletion potential and low global-warming potential. One series of their data is shown in Table 5.6. Calculate Z, the compressibihty factor, and the molar volume in mol m from the given data, and fit the data for Z as a function of 1 /Pm to both a linear and a quadratic equation to see whether a third virial coefficient is warranted by the data. [Pg.108]

Triclosan is retained in dental plaque for at least 8 hours, which in addition to its broad antibacterial property could make it suitable for use as an antiplaque agent in oral care preparations. However, the compound is rapidly released from oral tissues, resulting in relatively poor antiplaque properties as assessed in clinical studies of plaque formation. This observation is further corroborated by a poor correlation between minimal inhibitory concentration values generated in vitro and clinical plaque inhibitory properties of triclosan. Improvement of substantivity was accomplished by incorporation of triclosan in a polyvinyl methyl ether maleic acid copolymer (PVM/MA, Gantrez). With the combination of PVM/MA copolymer and triclosan, the substantivity of the triclosan was increased to 12 hours in the oral cavity. [Pg.502]

Today, a variety of therapeutic estrogens are produced semisynthetically from estrogen intermediates synthesized from diosgenin and other natural precursors. Two semisynthetic, orally active estrogens are ethinyl estradiol (5.27) and its 3-methyl ether (5.28, mestranol). Both of these are used in oral contraceptives (see section 5.8.3). Quinestrol (5.29) is another semisynthetic estrogen. The most important property of the semisynthetic estrogens is their increased oral effectiveness. [Pg.322]

The adventitious discovery, in prehistory, of the analgesic soporific and the euphoriant properties of the dried sap from the flower bulb of the poppy, papaver somnifemm, has been treated too often elsewhere to warrant repetition. By the nineteenth century organic chemistry had advanced far enough so that the active principle from opium had been isolated, purified, and crystallized. Increasing clinical use of this compound, morphine (1-1), and its naturally occurring methyl ether codeine (1-2) disclosed a host of side effects, the most daunting of which was, and stUl is, these compounds propensity for inducing physical dependence. [Pg.213]


See other pages where Methyl ethers properties is mentioned: [Pg.2566]    [Pg.2566]    [Pg.2566]    [Pg.2566]    [Pg.624]    [Pg.374]    [Pg.248]    [Pg.270]    [Pg.653]    [Pg.25]    [Pg.624]    [Pg.435]    [Pg.5]    [Pg.262]    [Pg.502]    [Pg.524]    [Pg.26]    [Pg.273]    [Pg.164]    [Pg.200]    [Pg.664]    [Pg.158]    [Pg.260]    [Pg.244]    [Pg.455]    [Pg.47]    [Pg.48]    [Pg.356]    [Pg.537]    [Pg.179]    [Pg.69]   
See also in sourсe #XX -- [ Pg.39 , Pg.265 ]




SEARCH



Methyl ethers physicochemical properties

Methyl ethers, physical properties

Methyl ethers, physical properties preparation

Methyl ethers, taste properties

Methyl vinyl ether physical properties

© 2024 chempedia.info