Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methyl ethers, physical properties

Vinyl Ethers. The principal commercial vinyl ethers are methyl vinyl ether (methoxyethene, C H O) [107-25-5], ethyl vinyl ether (ethoxyethene, C HgO) [104-92-2], and butyl vinyl ether (1-ethenyloxybutane, C H 20) [111-34-2]. (See Table 8 for physical properties.) Others such as the isopropyl, isobutyl, hydroxybutyl, decyl, hexadecyl, and octadecyl ethers, as well as the divinyl ethers of butanediol and of triethylene glycol, have been offered as development chemicals (see Ethers). [Pg.114]

The polymeric products can be made to vary widely in physical properties through controlled variation in the ratios of monomers employed in thek preparation, cross-linking, and control of molecular weight. They share common quaHties of high resistance to chemical and environmental attack, excellent clarity, and attractive strength properties (see Acrylic ester polymers). In addition to acryHc acid itself, methyl, ethyl, butyl, isobutyl, and 2-ethylhexyl acrylates are manufactured on a large scale and are available in better than 98—99% purity (4). They usually contain 10—200 ppm of hydroquinone monomethyl ether as polymerization inhibitor. [Pg.148]

Physical Properties. The physical properties of cyanoacetic acid [372-09-8] NM7—CH2COOH (28) ate summarized in Table 4. The industrially most important esters ate methyl cyanoacetate [105-34-0] and ethyl cyanoacetate [105-56-6]. Both esters ate miscible with alcohol and ether and immiscible with water. [Pg.470]

The physical properties of finish removers vary considerably due to the diverse uses and requirements of the removers. Finish removers can be grouped by the principal ingredient of the formula, method of appHcation, method of removal, chemical base, viscosity, or hazardous classification. Except for method of apphcation, a paint remover formulation usually has one aspect of each group, by which it can be used for one or more appHcations. A Hst of the most common organic solvents used in finish removers has been compiled (3). Many are mentioned throughout this article others include ethyl lactate [97-64-3] propylene carbonate [108-32-7] furfural alcohol [98-01-1/, dimethyl formamide [68-12-2] tetrahydrofuran [109-99-9] methyl amyl ketone [110-43-0] dipropylene glycol methyl ether [34590-94-8] and Exxate 600, a trade name of Exxon Chemicals. [Pg.550]

Many commercial grades of pine oil are available and are specified by physical properties and total alcohol content. Some commercial pine oils and the typical physical properties are Hsted in Table 4. Other grades of pine oil may constitute a blend of synthetic and natural pine oil and give the product a different odor characteristic. The odor difference is caused by the presence of phenoHc ethers anethole and methyl chavicol. [Pg.420]

The physical properties of methylene chloride are Hsted in Table 1 and the binary a2eotropes in Table 2. Methylene chloride is a volatile Hquid. Although methylene chloride is only slightly soluble in water, it is completely miscible with other grades of chlorinated solvents, diethyl ether, and ethyl alcohol. It dissolves in most other common organic solvents. Methylene chloride is also an excellent solvent for many resins, waxes, and fats, and hence is well suited to a wide variety of industrial uses. Methylene chloride alone exhibits no dash or fire point. However, as Htde as 10 vol % acetone or methyl alcohol is capable of producing a dash point. [Pg.518]

The cationic Pd(II) catalysts exhibit effective copolymerizations of ethylene and other a-olefins with polar-functionalized comonomers, with the majority of insertions occurring at the ends of branches. Among the best tolerated monomers are those bearing fluorine or oxygen-containing functionalities, such as esters, ketones, and ethers. The copolymerization of ethylene and acrylates, attractive because the monomers are inexpensive and the copolymers exhibit unique physical properties, has been well-studied mechanistically [27,69], Examples of copolymerizations of ethylene and a-olefins with methyl acrylate are shown in Table 4. In general, the amount of comonomer incorporation varies linearly with its reaction concentration and... [Pg.197]

In this article, the authors have endeavored to summarize the methods of synthesis and the proofs of constitution of all the known methyl ethers of D-glucopyranose and D-glucofuranose. Acyclic glucose ethers are not considered in this review. Later articles will deal with monosaccharides other than glucose. It has not been possible to discuss in full all the reactions involved, but to offset this disadvantage the bibliography has been made as complete as possible and tables have been compiled of the physical properties of the methyl-D-glucoses and of their more important derivatives. [Pg.159]

The adventitious discovery, in prehistory, of the analgesic soporific and the euphoriant properties of the dried sap from the flower bulb of the poppy, papaver somnifemm, has been treated too often elsewhere to warrant repetition. By the nineteenth century organic chemistry had advanced far enough so that the active principle from opium had been isolated, purified, and crystallized. Increasing clinical use of this compound, morphine (1-1), and its naturally occurring methyl ether codeine (1-2) disclosed a host of side effects, the most daunting of which was, and stUl is, these compounds propensity for inducing physical dependence. [Pg.213]

Table 12. Physical properties of the most stereoregular fraction of the polymers of the optically active and racemic (1-methyl-propyl)-vinyl-ether and (2-methyl-butyl)-vinyl-ether obtained using the Al(i-OCaH1)g-HtSOi catalytic system (65)... Table 12. Physical properties of the most stereoregular fraction of the polymers of the optically active and racemic (1-methyl-propyl)-vinyl-ether and (2-methyl-butyl)-vinyl-ether obtained using the Al(i-OCaH1)g-HtSOi catalytic system (65)...
Important as the molecular formula is. it does not describe fully the properties, or even in some cases the identity, of chemical compounds. For example, there are two compounds that have the molecular formula CjFLO. They are different in all their properties, both chemical and physical. This difference is due to a difference in the manner in which the atoms are connected in the molecules of the two substances. These differences can be shown only by the use of structural formulas, such as those shown in Fig. I, in which the valence bonds between the atom are shown. These structural formulas are determined circumstantially, lhat is. by the chemical reactions into which the compounds enter. (However, (heir arrangements have been confirmed In many cases by a direci instrumental means such us speclrometric methods, x-ray studies, etc.) These reactions differ markedly for ethyl alcohol and methyl ether. Such compounds which have the same molecular formula but differ due to the arrangements or positions of their atoms are called isomers, and the type just cited, in which the difference is in the grouping of the atoms, are called functional isomers. These, and many other lypes of isomers, are treated in the entry on Isomerism. [Pg.349]

Physical Properties. The physical properties or cvanoacelic aeitl N=C-CH COOH are summarized in Table 3. The industrially mosi important esters are methyl cyanoacetdte and ethyl eyanoacctaie. Both esters are miscible with alcohol and ether and immiscible with yvaier. [Pg.964]

The term oil and grease refers to a broad class of organic substances recovered from the sample matrices by extraction with an appropriate solvent. Such recovery, therefore, is characteristic of certain physical properties of the compounds, primarily the volatility of the compounds and their solubility in the extraction solvent. The solvent must be immiscible in water and volatile, as well as readily distilled on a water bath. Many solvents or mixed-solvent systems should be suitable for the extraction of oil and grease in aqueous and nonaqueous samples. These include petroleum ether, w-hexanc, methylene chloride, methyl ter/-butyl ether, and trichlorotrifhroroethan (freon). These solvents are listed in Table 1. [Pg.438]

Sulfonation is very useful chemical modification of polymer, as it induces high polarity in the polymer changing its chemical as well as physical properties. Sulfonated polymers are also important precursors for ionomer formation [75]. There are reports of sulfonation of ethylene-propylene diene terpolymer (EPDM) [76, 77], polyarylene-ether-sulfone [78], polyaromatic ether ketone [79], polyether ether ketone (PEEK) [80], styrene-ethylene-butylene-styrene block copolymer, (SEBS) [81]. Poly [bis(3-methyl phenoxy) phosphozene] [82], Sulfonated polymers show a distinct peak at 1176 cm"1 due to stretching vibration of 0=S=0 in the -S03H group. Another peak appears at 881 cm 1 due to stretching vibration of S-OH bond. However, the position of different vibrational bands due to sulfonation depends on the nature of the cations as well as types of solvents [75, 76]. [Pg.147]


See other pages where Methyl ethers, physical properties is mentioned: [Pg.401]    [Pg.1133]    [Pg.435]    [Pg.422]    [Pg.134]    [Pg.27]    [Pg.502]    [Pg.524]    [Pg.124]    [Pg.273]    [Pg.164]    [Pg.260]    [Pg.1052]    [Pg.277]    [Pg.1133]    [Pg.7]    [Pg.151]    [Pg.427]    [Pg.1427]    [Pg.363]    [Pg.1133]    [Pg.168]    [Pg.330]    [Pg.462]   
See also in sourсe #XX -- [ Pg.33 , Pg.283 ]




SEARCH



Ethere physical properties

Ethers physical properties

Methyl ethers, properties

© 2024 chempedia.info