Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methyl acetone ketone

The dibenzyl ketone has a very high b.p. (ca. 200°/21 mm.) and this remains in the flask when the unsymmetrical ketone has been removed by distillation. The dialkyl ketone has a comparatively low b.p. and is therefore easily removed by fractionation under normal pressure acetone is most simply separated by washing with water. In this way methyl benzyl ketone (R = CHj), ethyl benzyl ketone (R = CHgCH,) and n-propyl benzyl ketone (R = CHjCHjCH,) are prepared. By using hydrocinnamic acid in place of phenylacetic acid ... [Pg.727]

Science dealerships aren t the only places to get the stuff one needs. At those mega hardware stores one can find pure acetone, methanol, ethanol, toluene, methyl ethyl ketone, DCM(as a constituent of some stripping agents), sodium hydroxide in the form of lye, and some acids such as sulfuric and hydrochloric. These precious tools can be bought there cheaply and in great quantity. [Pg.13]

METHOD 4 [115]-80% phenol in aqueous H2SO4 soiution of pH 3 is brought to 50 C. 30% H2O2 is then added causing an exothermic reaction and a temperature of 15 C over 3-4 minutes time. 6% aqueous H2SO3 is added after 4.5 minutes, the solution quickly cooled and extracted with isopropyl acetone (Strike would think that another solvent like methyl ethyl ketone could be used) to give 60% catechol. [Pg.212]

Bhatnagar and Biswast measured the turbidity at 436 nm of 2l single sample of poly(methyl methacrylate) in several solvents, including acetone and methyl ethyl ketone (MEK) ... [Pg.717]

This oxidation process for olefins has been exploited commercially principally for the production of acetaldehyde, but the reaction can also be apphed to the production of acetone from propylene and methyl ethyl ketone [78-93-3] from butenes (87,88). Careflil control of the potential of the catalyst with the oxygen stream in the regenerator minimises the formation of chloroketones (94). Vinyl acetate can also be produced commercially by a variation of this reaction (96,97). [Pg.52]

A yield of about 95% of theoretical is achieved using this process (1.09 units of isopropyl alcohol per unit of acetone produced). Depending on the process technology and catalyst system, such coproducts as methyl isobutyl ketone and diisobutyl ketone can be produced with acetone (30). [Pg.96]

Acetone, Methyl Ethyl Ketone, and Methyl Isobntyl Ketone, KeportNo. 77, May 1972, Process Economics Program, SRI CEH, SRI International, Menlo Park, Calif, p. 604.5000 E. Contains detailed process information. [Pg.100]

SAN resins show considerable resistance to solvents and are insoluble in carbon tetrachloride, ethyl alcohol, gasoline, and hydrocarbon solvents. They are swelled by solvents such as ben2ene, ether, and toluene. Polar solvents such as acetone, chloroform, dioxane, methyl ethyl ketone, and pyridine will dissolve SAN (14). The interactions of various solvents and SAN copolymers containing up to 52% acrylonitrile have been studied along with their thermodynamic parameters, ie, the second virial coefficient, free-energy parameter, expansion factor, and intrinsic viscosity (15). [Pg.192]

Synthol coproducts include alcohols, ketones, and lower paraffins. They are used mainly as solvents in the paint and printing industries, although some alcohols are blended into fuels. In 1992 Sasol began producing 17,500 t/yr 1-butanol [71-36-3] from 5-07-acetaldehyde [75-07-0] and plaimed to start a plant to produce high purity ethanol [64-17-5] in 1993. Acetone [67-64-1] and methyl ethyl ketone [78-93-3] are two ketone coproducts sold as solvents. [Pg.168]

Ketones and esters are required for C-type inks. Types of esters are ethyl acetate, isopropyl acetate, normal propyl acetate, and butyl acetate. From the ketone class, acetone or methyl ethyl ketone (MEK) can be used. The usual solvent for D-type inks are mixtures of an alcohol, such as ethyl alcohol or isopropyl alcohol, with either aUphatic or aromatic hydrocarbons. Commonly used mixtures are 50/50 blends by volume of alcohol and aUphatic hydrocarbon. [Pg.252]

Ketones are an important class of industrial chemicals that have found widespread use as solvents and chemical intermediates. Acetone (qv) is the simplest and most important ketone and finds ubiquitous use as a solvent. Higher members of the aUphatic methyl ketone series (eg, methyl ethyl ketone, methyl isobutyl ketone, and methyl amyl ketone) are also industrially significant solvents. Cyclohexanone is the most important cycHc ketone and is primarily used in the manufacture of y-caprolactam for nylon-6 (see Cyclohexanoland cyclohexanone). Other ketones find appHcation in fields as diverse as fragrance formulation and metals extraction. Although the industrially important ketones are reviewed herein, the laboratory preparation of ketones is covered elsewhere (1). [Pg.485]

The physical properties of some common ketones are Hsted in Table 1. Ketones are commonly separated by fractional distillation, and vapor—Hquid equihbria and vapor pressure data are readily available for common ketones. A number of other temperature dependent physical properties for acetone, methyl ethyl ketone, methyl isobutyl ketone, and diethyl ketone have been pubHshed (3). [Pg.485]

Methyl Ethyl Ketone. Methyl ethyl ketone (MEK) (2-butanone), CH2COCH2CH2, is the next higher aUphatic ketone homologue to acetone, and third to acetone and cyclohexanone as the most important commercially produced ketone. [Pg.488]

Direct oxidation yields biacetyl (2,3-butanedione), a flavorant, or methyl ethyl ketone peroxide, an initiator used in polyester production. Ma.nufa.cture. MEK is predominandy produced by the dehydrogenation of 2-butanol. The reaction mechanism (11—13) and reaction equihbtium (14) have been reported, and the process is in many ways analogous to the production of acetone (qv) from isopropyl alcohol. [Pg.489]

Health and Safety Factors. MEK is slightly more toxic than acetone, but is not considered highly toxic, and nor does it exhibit cumulative toxicological properties. The OSHA time weighted average iu air is 200 ppm other measured toxicity values are shown iu Table 3. Methyl ethyl ketone is highly flammable. [Pg.490]

Methyl Isobutyl Ketone. Methyl isobutyl ketone (MIBK) (4-methyl-2-pentanone), (CH2)2CHCH2COCH2, is an industrially important solvent which after methyl methacrylate and bisphenol A is the third largest tonnage product obtained from acetone. [Pg.490]

DIBK can be produced by the hydrogenation of phorone which, in turn, is produced by the acid-catalyzed aldol condensation of acetone. It is also a by-product in the manufacture of methyl isobutyl ketone. Diisobutyl ketone ( 1.37/kg, October 1994) is produced in the United States by Union Carbide (Institute, West Virginia) and Eastman (Kingsport, Teimessee) (47), and is mainly used as a coating solvent. Catalytic hydrogenation of diisobutyl ketone produces the alcohol 2,6-dimethyl-4-heptanol [108-82-7]. [Pg.493]

Methyl Amyl Ketone. Methyl amyl ketone [110-43-0] (MAK) (2-heptanone) is a colorless Hquid with a faint fmity (banana) odor. It is found in oil of cloves and cinnamon-bark oil, and is manufactured by the condensation of acetone and butyraldehyde (158). Other preparations are known (159-162). [Pg.493]

Methyl Isoamyl Ketone. Methyl isoamyl ketone [110-12-3] (5-methyl-2-hexanone) is a colorless Hquid with a mild odor. It is produced by the condensation of acetone and isobutyraldehyde (164) in three steps which proceed via the keto-alcohol dehydration to 5-methyl-3-hexen-2-one, and hydrogenation to 5-methyl-2-hexanone. [Pg.493]

Methyl vinyl ketone can be produced by the reactions of acetone and formaldehyde to form 4-hydroxy-2-butanone, followed by dehydration to the product (267,268). Methyl vinyl ketone can also be produced by the Mannich reaction of acetone, formaldehyde, and diethylamine (269). Preparation via the oxidation of saturated alcohols or ketones such as 2-butanol and methyl ethyl ketone is also known (270), and older patents report the synthesis of methyl vinyl ketone by the hydration of vinylacetylene (271,272). [Pg.496]

In petroleum and oxygenate finish removers, the major ingredient is normally acetone, methyl ethyl ketone [78-93-3], or toluene. Cosolvents include methanol, / -butanol [71-36-3], j -butyl alcohol [78-92-2], or xylene [1330-20-7]. Sodium hydroxide or amines are used to activate the remover. Paraffin wax is used as an evaporation retarder though its effectiveness is limited because it is highly soluble in the petroleum solvents. CeUulose thickeners are sometimes added to liquid formulas to assist in pulling the paraffin wax from the liquid to form a vapor barrier or to make a thick formula. Corrosion inhibitors are added to stabili2e tbe formula for packaging (qv). [Pg.551]

Solvents used for dewaxing are naphtha, propane, sulfur dioxide, acetone—benzene, trichloroethylene, ethylenedichloride—benzene (Barisol), methyl ethyl ketone—benzene (benzol), methyl -butyl ketone, and methyl / -propyl ketone. Other solvents in commercial use for dewaxing include /V-methylpyrrolidinone, MEK—MIBK (methyl isobutyl ketone), dichloroethane—methylene dichloride, and propfyene—acetone. [Pg.211]

Dehydrogenation processes for acetone, methyl isobutyl ketone [108-10-1], and higher ketones (qv) utilizing, in one process, a copper-based catalyst have been disclosed (18,19). Dehydrogenation reaction is used to study the acid—base character of catalytic sites on a series of oxides (20,21). [Pg.105]

Chemical. The use of isopropyl alcohol as a feedstock for the production of acetone is expected to remain stable, as the dominant process for acetone is cumene oxidation. Isopropyl alcohol is also consumed in the production of other chemicals such as methyl isobutyl ketone, methyl isobutyl carbinol [108-11-2] isopropjlamine, and isopropyl acetate. The use of diisopropyl ether as a fuel ether may become a significant oudet for isopropyl alcohol. [Pg.113]

The same methodology can be used to prepare 2,3-lutidine (58) by using methyl ethyl ketone in place of acetone. [Pg.333]

Anhydrous stannous chloride, a water-soluble white soHd, is the most economical source of stannous tin and is especially important in redox and plating reactions. Preparation of the anhydrous salt may be by direct reaction of chlorine and molten tin, heating tin in hydrogen chloride gas, or reducing stannic chloride solution with tin metal, followed by dehydration. It is soluble in a number of organic solvents (g/100 g solvent at 23°C) acetone 42.7, ethyl alcohol 54.4, methyl isobutyl carbinol 10.45, isopropyl alcohol 9.61, methyl ethyl ketone 9.43 isoamyl acetate 3.76, diethyl ether 0.49, and mineral spirits 0.03 it is insoluble in petroleum naphtha and xylene (2). [Pg.64]

Acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, ethyl acetate, and tetrahydrofuran are solvents for vinyhdene chloride polymers used in lacquer coatings methyl ethyl ketone and tetrahydrofuran are most extensively employed. Toluene is used as a diluent for either. Lacquers prepared at 10—20 wt % polymer sohds in a solvent blend of two parts ketone and one part toluene have a viscosity of 20—1000 mPa-s (=cP). Lacquers can be prepared from polymers of very high vinyhdene chloride content in tetrahydrofuran—toluene mixtures and stored at room temperature. Methyl ethyl ketone lacquers must be prepared and maintained at 60—70°C or the lacquer forms a sohd gel. It is critical in the manufacture of polymers for a lacquer apphcation to maintain a fairly narrow compositional distribution in the polymer to achieve good dissolution properties. [Pg.442]

Methyl amyl ketone, derived from the crossed aldol condensation of -butyraldehyde and acetone, is used predominandy as a high soHds coatings solvent. It is also employed as a replacement for the very toxic 2-ethoxyethyl acetate [111 -15-9J. [Pg.380]

Methyl isoamyl ketone (MIAK), a product derived from the aldol condensation of isobutyraldehyde and acetone, is used principally as a solvent for lacquers, ceUulosics, and epoxies. [Pg.380]

Reaction of HOCl, formed from calcium hypochlorite and CO2, with highly substituted alkenes in CH2CI2 is a convenient route to aHyUc chlorides (111). Ketones are chlorinated to a-chloroketones by reaction with HOCl Acetone initially gives CH2COCH2CI (112). Methyl ethyl ketone gives 78% CH3CHCICOCH3, 15% CH3CH2COCH2CI, and 7% dichlorides (113). [Pg.468]

Cya.nideExcha.nge, Acetone cyanohydrin and methyl isobutyl ketone cyanohydrin [4131 -68-4] dissolved in an organic solvent, such as diethyl ether or methyl isobutyl ketone, undergo cyanide exchange with aqueous cyanide ion to yield a significant cyanide carbon isotope separation. The two-phase system yields cyanohydrin enriched in carbon-13 and aqueous cyanide depleted in carbon-13. Fquilibrium is obtained in seconds. [Pg.411]

Ethylene Cyanohydrin. This cyanohydrin, also known as hydracrylonitnle or glycocyanohydrin [109-78-4] is a straw-colored Hquid miscible with water, acetone, methyl ethyl ketone, and ethanol, and is insoluble in benzene, carbon disulfide, and carbon tetrachloride. Ethylene cyanohydrin differs from the other cyanohydrins discussed here in that it is a P-cyanohydrin. It is formed by the reaction of ethylene oxide with hydrogen cyanide. [Pg.415]

Aldehydes and ketones such as acetaldehyde, ben2aldehyde, acetone, acetophenone, cyclohexanone, cyclopentanone, and methyl ethyl ketone have been condensed with CPD in the presence of alkaline agents to produce colored hilvene derivatives. A typical condensation with a ketone is depicted as follows ... [Pg.431]

Other modifications of the polyamines include limited addition of alkylene oxide to yield the corresponding hydroxyalkyl derivatives (225) and cyanoethylation of DETA or TETA, usuaHy by reaction with acrylonitrile [107-13-1/, to give derivatives providing longer pot Hfe and better wetting of glass (226). Also included are ketimines, made by the reaction of EDA with acetone for example. These derivatives can also be hydrogenated, as in the case of the equimolar adducts of DETA and methyl isobutyl ketone [108-10-1] or methyl isoamyl ketone [110-12-3] (221 or used as is to provide moisture cure performance. Mannich bases prepared from a phenol, formaldehyde and a polyamine are also used, such as the hardener prepared from cresol, DETA, and formaldehyde (228). Other modifications of polyamines for use as epoxy hardeners include reaction with aldehydes (229), epoxidized fatty nitriles (230), aromatic monoisocyanates (231), or propylene sulfide [1072-43-1] (232). [Pg.47]

The preparation of neopentyl alcohol from diisobutylene herein described represents an example of acid-catalyzed addition of hydrogen peroxide to a branched olefin, followed by an acid-catalyzed rearrangement of the tertiary hydroperoxide formed. In addition to neopentyl alcohol, there are formed acetone and also small amounts of methanol and methyl neopentyl ketone by an alternative rearrangement of the hydroperoxide. [Pg.79]


See other pages where Methyl acetone ketone is mentioned: [Pg.172]    [Pg.172]    [Pg.92]    [Pg.94]    [Pg.99]    [Pg.492]    [Pg.493]    [Pg.551]    [Pg.104]    [Pg.52]    [Pg.378]    [Pg.91]    [Pg.270]    [Pg.48]    [Pg.29]    [Pg.144]   


SEARCH



Ketone acetone

© 2024 chempedia.info