Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acid catalyzed additions and

In acidic media, polarized multiple bonds often undergo acid catalyzed addition, and a common mode of addition is the Ad 2. Deprotonation of the nucleophile by solvent gives the neutral compound. Common examples of this easily reversible Adg2 reaction are the formation of hydrates (NuH is H2O) and, if NuH is ROH, hemiacetals (from aldehydes) and hemiketals (from ketones). Usually this reaction favors reactants. [Pg.228]

Citral readily forms acetals by acid-catalyzed addition of alcohols or by the use of trialkoxyorthoformates. Citral dimethyl acetal [7549-37-3] is stable under alkaline conditions, whereas citral is not. Neryl and geranyl nitriles can be made by oximation of citral and dehydration of the intermediate oxime. For instance, geranonitrile [31983-27-4] is made as follows ... [Pg.424]

Azirines react with alcohols in the presence of alkoxides to give alkoxyaziridines (67JA4456). Further treatment with alcohol and alkoxide results in the formation of amino ketone acetals. Alkoxyaziridines are not isolated in general from the acid-catalyzed addition of methanol to azirines. Azirines are also known to react with amines (66JOC1423). Frequently the initially produced adducts undergo subsequent transformations. [Pg.72]

The acid-catalyzed additions of bromide and chloride ion to thiiranes occurs readily, with halide preferentially but not exclusively attacking the most substituted carbon atom of the thiirane. The reaction of 1-substituted thiiranes with acetyl chloride shows a slight preference for halide attack at the less substituted carbon atom (80MI50601). For further discussion of electrophilic catalysis of halide ion attack see Section 5.06.3.3.2. The reaction of halogens with thiiranes involves electrophilic attack on sulfur (Section 5.06.3.3.6) followed by nucleophilic attack of halide ion on carbon. [Pg.162]

An 6>-nitrobenzyl ether.can be cleaved by photolysis. In tyrosine this avoids the use of acid-catalyzed cleavage and the attendant conversion to S-beirayltyrosine. (Note that this unwanted conversion can also be suppressed by the addition of thioanisole see section on benzyl ether cleavage.)... [Pg.159]

The preparation of neopentyl alcohol from diisobutylene herein described represents an example of acid-catalyzed addition of hydrogen peroxide to a branched olefin, followed by an acid-catalyzed rearrangement of the tertiary hydroperoxide formed. In addition to neopentyl alcohol, there are formed acetone and also small amounts of methanol and methyl neopentyl ketone by an alternative rearrangement of the hydroperoxide. [Pg.79]

Acid-Catalyzed Hydration and Related Addition Reactions... [Pg.358]

The formation of alcohols by acid-catalyzed addition of water to alkenes is a fundamental organic reaction. At the most rudimentary mechanistic level, it can be viewed as involving a carbocation intermediate. The alkene is protonated, and the carbocation is then captured by water. [Pg.358]

A mercurinium ion has both similarities and differences as compared with the intermediates that have been described for other electrophilic additions. The proton that initiates acid-catalyzed addition processes is a hard acid and has no imshared electrons. It can form either a carbocation or a hydrogen-bridged cation. Either species is electron-deficient and highly reactive. [Pg.370]

Alkynes react when heated with trifluoroacetic acid to give addition products. Mixtures of syn and anti addition products are obtained. Similar addition reactions occur with trifluoromethanesulfonic acid. These reactions are analogous to acid-catalyzed hydration and proceed through a vinyl cation intermediate. [Pg.373]

A rather special procedure for the preparation of 21-hydroxy-20-ketopreg-nanes starts with the 17a-ethoxyethynyl-17 -hydroxy steroids described earlier. Free radical addition of ethanethiol to the triple bond, followed by acid-catalyzed hydrolysis and dehydration gives the 20-thioenol ether 21-aldehyde. This can be reduced with lithium aluminum hydride to the C-21 alcohol and then hydrolyzed to the C-20 ketone in the presence of mercuric chloride. The overall yield, without isolation of intermediates, is in the order of 50% ... [Pg.212]

The Lewis acid-catalyzed addition of silyl kelene acetals occurred m high yield, and when the ketene acetal bore a substituent, the reactions occurred with modest diastereofacial selectivity [d] (equation 7) (Table 3)... [Pg.617]

The acid-catalyzed addition of an aldehyde—often formaldehyde 1—to a carbon-carbon double bond can lead to formation of a variety of products. Depending on substrate structure and reaction conditions, a 1,3-diol 3, allylic alcohol 4 or a 1,3-dioxane 5 may be formed. This so-called Prins reaction often leads to a mixture of products. [Pg.232]

Most of the biochemical reactions that take place in the body, as well as many organic reactions in the laboratory, yield products with chirality centers. Fo example, acid-catalyzed addition of H2O to 1-butene in the laboratory yield 2-butanol, a chiral alcohol. What is the stereochemistry of this chiral product If a single enantiomer is formed, is it R or 5 If a mixture of enantiomers i formed, how much of each In fact, the 2-butanol produced is a racemic mix ture of R and S enantiomers. Let s see why. [Pg.311]

Triple bonds can be monohydroborated to give vinylic boranes, which can be reduced with carboxylic acids to cis alkenes or oxidized and hydrolyzed to aldehydes or ketones. Terminal alkynes give aldehydes by this method, in contrast to the mercuric or acid-catalyzed addition of water discussed at 15-4. However, terminal alkynes give vinylic boranes (and hence aldehydes) only when treated with a hindered borane such as 47, 48, or catecholborane (p. 798)," or with BHBr2—SMe2. The reaction between terminal alkynes and BH3 produces 1,1-... [Pg.1015]

Hydration and Other Acid-Catalyzed Additions of Oxygen Nucleophiles... [Pg.293]

Lewis acid-catalyzed additions can be carried out in the presence of other chiral ligands that induce enantioselectivity.156 Titanium TADDOL induces enantioselectivity in alkylzinc additions to aldehydes. A variety of aromatic, alkyl, and a, (3-unsaturated aldehydes give good results with primary alkylzinc reagents.157... [Pg.656]

As with the silanes, the most useful synthetic procedures involve electrophilic attack on alkenyl and allylic stannanes. The stannanes are considerably more reactive than the corresponding silanes because there is more anionic character on carbon in the C-Sn bond and it is a weaker bond.156 The most useful reactions in terms of syntheses involve the Lewis acid-catalyzed addition of allylic stannanes to aldehydes.157 The reaction occurs with allylic transposition. [Pg.836]

In the context of preparing potential inhibitors of dihydrofolate reductase (DHFR), the group of Organ has developed a rapid microwave-assisted method for the preparation of biguanide libraries (Scheme 6.174) [330]. Initial optimization work was centered around the acid-catalyzed addition of amines to dicyandiamide. It was discovered that 150 °C was the optimum temperature for reaction rate and product recovery, as heating beyond this point led to decomposition. While the use of hydrochloric acid as catalyst led to varying yields of product, evaluation of trimethylsilyl chloride in acetonitrile as solvent led to improved results. As compared to the protic... [Pg.219]

Carbon monoxide rapidly inserts into the carbon—zirconium bond of alkyl- and alkenyl-zirconocene chlorides at low temperature with retention of configuration at carbon to give acylzirconocene chlorides 17 (Scheme 3.5). Acylzirconocene chlorides have found utility in synthesis, as described elsewhere in this volume [17]. Lewis acid catalyzed additions to enones, aldehydes, and imines, yielding a-keto allylic alcohols, a-hydroxy ketones, and a-amino ketones, respectively [18], and palladium-catalyzed addition to alkyl/aryl halides and a,[5-ynones [19] are examples. The acyl complex 18 formed by the insertion of carbon monoxide into dialkyl, alkylaryl, or diaryl zirconocenes may rearrange to a r 2-ketone complex 19 either thermally (particularly when R1 = R2 = Ph) or on addition of a Lewis acid [5,20,21]. The rearrangement proceeds through the less stable... [Pg.88]

A variety of other powerful electrophiles add to the allylzirconium species 91, as shown in Scheme 3.26. Such reactions include the Lewis acid catalyzed addition of aryl, alkyl, or alkenyl acetals, derived from aldehydes, but not from ketones, and the addition of imi-nium species that lack p-hydrogens [56,58]. [Pg.98]

The fourth reaction is transformation of the aldehyde into an acetal. This proceeds by acid-catalyzed addition of an alcohol to the carbonyl, loss of H2O, and then addition of the acid O to the carbocation. Other perfectly correct sequences of steps could be written here. [Pg.200]


See other pages where Acid catalyzed additions and is mentioned: [Pg.14]    [Pg.62]    [Pg.63]    [Pg.617]    [Pg.14]    [Pg.62]    [Pg.63]    [Pg.617]    [Pg.226]    [Pg.159]    [Pg.473]    [Pg.289]    [Pg.145]    [Pg.162]    [Pg.360]    [Pg.96]    [Pg.220]    [Pg.223]    [Pg.160]    [Pg.259]    [Pg.852]    [Pg.514]    [Pg.109]    [Pg.77]    [Pg.833]   


SEARCH



Acid catalyzed, addition

Acid-Catalyzed Hydration and Related Addition Reactions

Acid-catalyzed additions and substitutions

Addition catalyzed

Amides, and acidity scales by metal catalyzed addition

Hydration and Other Acid-Catalyzed Additions

Hydration and Other Acid-Catalyzed Additions of Oxygen Nucleophiles

© 2024 chempedia.info