Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methanol 30 percent

TABLE 8.17 Standard Reference Values pH for the Measurement of Acidity in 50 Weight Percent Methanol-Water... [Pg.936]

Optical fuel sensor to determine percent methanol... [Pg.426]

The nameplate capacity of worldwide methanol plants is given by country in Table 2 (27). A significant portion of this capacity is based on natural gas feedstock. Percent utilization is expected to remain in the low 90s through the mid-1990s. A principal portion of this added capacity is expected to continue to come from offshore sources where natural gas, often associated with cmde oil production, is valued inexpensively. This has resulted in the emergence of a substantial international trade in methanol. In these cases, the cost of transportation is a relatively larger portion of the total cost of production than it is for domestic plants. [Pg.281]

Anhydrous ammonia is normally analy2ed for moisture, oil, and residue. The ammonia is first evaporated from the sample and the residue tested (86). In most instances, the amount of oil and sediment ia the samples are insignificant and the entire residue may be assumed to be water. For more accurate moisture determinations, the ammonia can be dissociated into nitrogen and hydrogen and the dewpoint of the dissociated gas obtained. This procedure works well where the concentration of water is in the ppm range. Where the amount of water is in the range of a few hundredths of a percent, acetic acid and methanol can be added to the residue and a Karl Fischer titration performed to an electrometricaHy detected end point (89—92). [Pg.357]

Both equations give the weight percent of sodium bromide iu an aqueous saturated solution to within 0.02 percentage units. One gram of sodium bromide dissolves iu about 16 mL of ethanol and 6 mL of methanol (3). [Pg.188]

Pectins are subdivided according to their degree of esterification (DE), a designation of the percent of carboxyl groups esterified with methanol. Pectins with DE >50% are high methoxyl pectins (HM pectins) [65546-99-8]-, those with DE <50% are low methoxyl pectins (LM pectins) [9049-34-7]. [Pg.488]

Methyl-te/t-butyl ether, a gasoline additive, is made from isobutene and methanol with distillation in a bed of acidic ion-exchange resin catalyst. The MTBE goes to the bottom with purity above 99 percent and unreacted materials overhead. [Pg.707]

The rate-based model gave a distillate with 0.023 mol % ethylbenzene and 0.0003 mol % styrene, and a bottoms product with essentially no methanol and 0.008 mol % toluene. Miirphree tray efficiencies for toluene, styrene, and ethylbenzene varied somewhat from tray to tray, but were confined mainly between 86 and 93 percent. Methanol tray efficiencies varied widely, mainly from 19 to 105 percent, with high values in the rectifying section and low values in the stripping section. Temperature differences between vapor and liquid phases leaving a tray were not larger than 5 F. [Pg.1292]

Based on an average tray efficiency of 90 percent for the hydrocarbons, the eqiiilibniim-based model calculations were made with 36 equilibrium stages. The results for the distillate and bottoms compositions, which were very close to those computed by the rate-based method, were a distillate with 0.018 mol % ethylbenzene and less than 0.0006 mol % styrene, and a bottoms product with only a trace of methanol and 0.006 mol % toluene. [Pg.1292]

FIG. 23-3 Temperature and composition profiles, a) Oxidation of SOp with intercooling and two cold shots, (h) Phosgene from GO and Gfi, activated carbon in 2-in tubes, water cooled, (c) Gumene from benzene and propylene, phosphoric acid on < uartz, with four quench zones, 260°G. (d) Mild thermal cracking of a heavy oil in a tubular furnace, hack pressure of 250 psig and sever heat fluxes, Btu/(fr-h), T in °F. (e) Vertical ammonia svi,ithesizer at 300 atm, with five cold shots and an internal exchanger. (/) Vertical methanol svi,ithesizer at 300 atm, Gr O -ZnO catalyst, with six cold shots totaling 10 to 20 percent of the fresh feed. To convert psi to kPa, multiply by 6.895 atm to kPa, multiply by 101.3. [Pg.2072]

Acetic acid from methanol by the Monsanto process, CH3OH -1-CO CH3COOH, rhodium iodide catalyst, 3 atm (44 psi), 150°C (302°F), 99 percent selectivity of methanol. [Pg.2092]

Solution Polymerization These processes may retain the polymer in solution or precipitate it. Polyethylene is made in a tubular flow reactor at supercritical conditions so the polymer stays in solution. In the Phillips process, however, after about 22 percent conversion when the desirable properties have been attained, the polymer is recovered and the monomer is flashed off and recyled (Fig. 23-23 ). In another process, a solution of ethylene in a saturated hydrocarbon is passed over a chromia-alumina catalyst, then the solvent is separated and recyled. Another example of precipitation polymerization is the copolymerization of styrene and acrylonitrile in methanol. Also, an aqueous solution of acrylonitrile makes a precipitate of polyacrylonitrile on heating to 80°C (176°F). [Pg.2102]

We have found out, that a mobile phase methanol - water and a column of the sorbent C8 should be used for sepai ation AIST and FAS components. The duration of the analysis has been 20 minutes. The error of AIST determination does not exceed 2 percent. [Pg.133]

A solution of 18 grams of ethyl 2-bromopropionate in 20 ml of tetrahydrofuran is then added to the cooled reaction mixture. After 24 hours at 20°C, the product is hydrolyzed by adding 200 ml of 5 weight percent methanolic sodium hydroxide followed by heating to reflux for 1 hour. The reaction mixture is then diluted with excess 1 N sulfuric acid and extracted with ether. The ether phase Is separated, evaporated to dryness and the residue is recrystallized from acetone-hexane to yield 2-(6-methoxv-2-naphthyl)propionic acid. [Pg.1060]

In contrast with the AFC, the PAFC can demonstrate reliable operation with 40 percent to 50 percent system efficiency even when operating on low quality fuels, such as waste residues. This fuel flexibility is enabled by higher temperature operation (200°C vs. 100°C for the AFC) since this raises electro-catalyst tolerance toward impurities. Flowever, the PAFC is still too heavy and lacks the rapid start-up that is nec-essaiy for vehicle applications because it needs preheating to 100°C before it can draw a current. This is unfortunate because the PAFC s operating temperature would allow it to thermally integrate better with a methanol reformer. [Pg.528]

Compared with other alternative motor fuel options (reformulated gasoline, compressed or liquefied natural gas, ethanol from corn or coal, methanol and electricity), propane has the lowest greenhouse gas emissions except for natural gas. According to a 1998 study by the Institute of Transportation Studies, greenhouse emissions from propane vehicles arc 21.8 percent less than from gasoline or diesel. [Pg.722]

Methanol accounted for less than one hundredth of one percent of total transportation fuel consump-... [Pg.794]

Dimethyl ether is to be separated from methanol. A batch type operation is to be tried to see if an existing coil-in-tank can be used. The pressure of the system will be about 55 psia. How many total mols will remain in the bottoms when the bottoms liquid composition contains 0.5 mol percent dimethyl ether What is the composition of the total overhead collected ... [Pg.54]

Solubility (in percent at about 18°). Water 0.12, methanol 0.05, pyr 0.06 amyl acetate 0.04. Practically insol in benz, petr eth, chlf, trichloroethylene, carbon tetrachloride, carbon disulfide, eth and acet... [Pg.726]

A PEIT of 50/50 (molar ratio) composition is synthesized by a two-step reaction sequence as follows. In the first step, 97.10 g (0.5 mol) dimethyl terephthalate (DMT), 97.10 g (0.5 mol) dimethyl isophthalate (DMI), 136.55 g (2.2 mol) 1,2-ethanediol, and zinc acetate dihydrate ester interchange catalyst (2.7 x 10 4% mass of the total amount of DMI and DMT mixture) are weighed into a threenecked flask fitted with a mechanical stirrer, a nitrogen inlet, and a condenser. The medium is stirred for 2.0-2.5 h at 180-210°C under nitrogen. Ninety-two percent of the theoretical amount of methanol is removed by distillation. In the second step, antimony acetate polycondensation catalyst and trimethyl phosphate thermal stabilizer (9.9 x 10-4 and 1.5 x 10 3% mass of the total amount of DMI... [Pg.106]

Note In the second spray potassium hydroxide solution can be replaced by sodium hydroxide solution or by a solution of 17 g benzyltrimethylammonium hydroxide in 100 ml 33 percent methanol [4]. The Kedde reagent [13] can also be applied very sue-... [Pg.140]

Spray solution Dissolve 1 to 5 g vanillin in 100 ml hydrochloric acid (37%) [1, 7, 12, 13] or 50 percent methanolic hydrochloric acid [2j. [Pg.229]

Figure 4.41. Trend analysis over 12 batches of a bulk chemical. The sieve analysis shows that over time crystals larger than 250 /urn were reduced from a weight contribution in the range of a few percent of the total to about 1% in favor of smaller sizes. Impurity C appears to follow the trend given by the lead compound for the competing side reaction 1. The very low moisture found for sample 3 could be due to a laboratory error because during drying one would expect ethanol to be driven off before water. Methanol is always below the detection limit. Figure 4.41. Trend analysis over 12 batches of a bulk chemical. The sieve analysis shows that over time crystals larger than 250 /urn were reduced from a weight contribution in the range of a few percent of the total to about 1% in favor of smaller sizes. Impurity C appears to follow the trend given by the lead compound for the competing side reaction 1. The very low moisture found for sample 3 could be due to a laboratory error because during drying one would expect ethanol to be driven off before water. Methanol is always below the detection limit.

See other pages where Methanol 30 percent is mentioned: [Pg.828]    [Pg.425]    [Pg.425]    [Pg.494]    [Pg.347]    [Pg.486]    [Pg.199]    [Pg.415]    [Pg.2115]    [Pg.2411]    [Pg.2426]    [Pg.238]    [Pg.141]    [Pg.194]    [Pg.1179]    [Pg.1179]    [Pg.66]    [Pg.228]    [Pg.553]    [Pg.792]    [Pg.794]    [Pg.795]    [Pg.301]    [Pg.231]    [Pg.26]    [Pg.470]   
See also in sourсe #XX -- [ Pg.3 , Pg.376 ]




SEARCH



© 2024 chempedia.info