Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass spectroscopy chemical ionization

See also Biochemical Applications of Mass Spectrometry Chemical Structure Information from Mass Spectrometry Chemical Ionization in Mass Spectrometry Chromatography-MS, Methods Forensic Science, Applications of Atomic Spectroscopy Forensic Science, Applications of IR Spectroscopy Hyphenated Techniques, Applications of in Mass Spectrometry Ion Trap Mass Spectrometers Isotopic Labelling Mass Spectrometry Medical Applications of Mass Spectrometry MS-MS and MS Negative Ion Mass Spectrometry, Methods Quadrupoles, Use of in Mass Spectrometry. [Pg.621]

Anbar, Determination of Subprogram Amounts of Chemical Agents in the Atmosphere , Edge-woodArs Contract Rept EC-CR-74028, SRI Proj 3122 (1974) ( A method of mass spectroscopy, employing a silicone membrane and field ionization, which involves other new techniques, is presented which is sensitive to picogram amts of chemical agents in the atm)... [Pg.141]

A number of analytical techniques such as FTIR spectroscopy,65-66 13C NMR,67,68 solid-state 13 C NMR,69 GPC or size exclusion chromatography (SEC),67-72 HPLC,73 mass spectrometric analysis,74 differential scanning calorimetry (DSC),67 75 76 and dynamic mechanical analysis (DMA)77 78 have been utilized to characterize resole syntheses and crosslinking reactions. Packed-column supercritical fluid chromatography with a negative-ion atmospheric pressure chemical ionization mass spectrometric detector has also been used to separate and characterize resoles resins.79 This section provides some examples of how these techniques are used in practical applications. [Pg.407]

A detailed description of sources used in atmospheric pressure ionization by electrospray or chemical ionization has been compiled.2 Atmospheric pressure has been used in a wide array of applications with electron impact, chemical ionization, pressure spray ionization (ionization when the electrode is below the threshold for corona discharge), electrospray ionization, and sonic spray ionization.3 Interferences potentially include overlap of ions of about the same mass-charge ratio, mobile-phase components, formation of adducts such as alkali metal ions, and suppression of ionization by substances more easily ionized than the analyte.4 A number of applications of mass spectroscopy are given in subsequent chapters. However, this section will serve as a brief synopsis, focusing on key techniques. [Pg.59]

Liquid chromatography was developed to analyze carbonyl (2,4-dinitro-phenyl) hydrazones with detection by diode array ultraviolet spectroscopy (DA-UV) and by atmospheric pressure negative chemical ionization (APNCI) mass spectrometry [716]. In addition, LC can be combined with electrospray ionization coupled on-line with a photolysis reactor for better detection and confirmation of photo degradation products [717]. [Pg.88]

Chemical/Physical. Atkinson et al. (2000) studied the kinetic and products of the gas-phase reaction of 2-heptanone with OH radicals in purified air at 25 °C and 740 mmHg. A relative rate constant of 1.17 x 10 " cmVmolecule Sec was calculated for this reaction. Reaction products identified by GO, FTIR, and atmospheric pressure ionization tandem mass spectroscopy were (with respective molar yields) formaldehyde, 0.38 acetaldehyde, L0.05 propanal, X0.05 butanal, 0.07 pentanal, 0.09 and molecular weight 175 organic nitrates. [Pg.622]

MS, chemical ionization-MS, and sometimes GC/infrared spectroscopy (IR) have been used with GC/MS to obtain structural information. Examples of the use of GC/ MS for identifying new DBFs include the recent identification of iodo-acids. The iodo-acids were discovered in drinking water treated with chloramination through the use of full-scan GC/MS on the methylated extracts. Empirical formula information for both the molecular ions and the fragment ions was obtained by high-resolution electron ionization (EI)-MS, and the spectra were interpreted to yield tentative identifications of five new iodo-acids (iodoacetic acid, bromoiodoacetic acid, ( )-3-bromo-3-iodopropenoic acid, (Z)-3-bromo-3-iodopropenoic acid, and )-2-iodo-3-methylbutenedioic acid). Structural assignments were then confirmed by the match of mass spectra and GC retention times to authentic chemical standards, several of which had to be synthesized. [Pg.121]

Carboxylic acids The smallest carboxylic acid, formic acid, can be measured using infrared spectroscopy (Table 11.2), since it has characteristic absorption bands. As discussed earlier and seen in Fig. 11.33b, mass spectrometry with chemical ionization using SiF5 also revealed HCOOH in an indoor environment (Huey et al., 1998). However, since the sensitivity in these initial studies was about two orders of magnitude less than that for HN03, the detection limit may be about the same as that for FTIR and TDLS. Formic and acetic acids have been monitored continuously from aircraft (Chapman et al., 1995) and their surface flux determined by eddy correlation (Shaw et al., 1998) using atmospheric pressure ionization mass spectrometry. Detection limits are about 30 ppt. [Pg.594]

Field ionization mass spectroscopy of chemically reactive molecular gases found often dissociated species and associated species of these... [Pg.295]

F. H. Field, Chemical Ionization Mass Spectroscopy, Accts. Chem. Res. 1,42 (1968). Ion-Cyclotron Resonance Spectroscopy... [Pg.1370]

Pate M.H. Mach, Analysis of Explosives Using Chemical Ionization Mass Spectroscopy , IntJ-MassSpectromlonPhys 26 (3), 267—77 (1978)... [Pg.792]

Several researchers have combined the separating power of supercritical fluid chromatography (SFC) with more informative spectroscopic detectors. For example, Pinkston et. al. combined SFC with a quadrupole mass spectrometer operated in the chemical ionization mode to analyze poly(dimethylsiloxanes) and derivatized oligosaccharides (7). Fourier Transform infrared spectroscopy (FTIR) provides a nondestructive universal detector and can be interfaced to SFC. Taylor has successfully employed supercritical fluid extraction (SFE)/SFC with FTIR dectection to examine propellants (8). SFC was shown to be superior over conventional gas or liquid chromatographic methods. Furthermore, SFE was reported to have several advantages over conventional liquid solvent extraction (8). Griffiths has published several... [Pg.292]

Experimental Techniques A absorption CIMS = chemical ionization mass spectroscopy CK = competitive kinetics DF discharge flow EPR = electron paramagnetic resonance FP = flash photolysis FT = flow tube FTIR Fourier transform intra-red GC = gas chromatography, UF = laser induced fluorescence LMR = laser magnetic resonance MS = mass spectroscopy PLP = pulsed laser photolysis SC = smog chamber SP = steady (continuous) photolysis UVF = ultraviolet flourescence spectroscopy... [Pg.419]

Capillary Electrophoresis with Flame Photometric Detection Chemical Weapons Convention Extracted Ion Chromatogram Electron Impact Mass Spectrometry Electrospray Ionization Flow Injection Analysis Flame Photometric Detector Gas Chromatography/Fourier Transform Infrared Spectroscopy Gas Chromatography/Mass Spectrometry Gas chromatography International Union for Pure and... [Pg.126]


See other pages where Mass spectroscopy chemical ionization is mentioned: [Pg.195]    [Pg.147]    [Pg.156]    [Pg.52]    [Pg.525]    [Pg.35]    [Pg.178]    [Pg.130]    [Pg.184]    [Pg.59]    [Pg.106]    [Pg.318]    [Pg.446]    [Pg.296]    [Pg.147]    [Pg.238]    [Pg.686]    [Pg.1360]    [Pg.1361]    [Pg.1363]    [Pg.1363]    [Pg.1364]    [Pg.1370]    [Pg.1000]    [Pg.406]    [Pg.26]    [Pg.471]    [Pg.91]    [Pg.120]    [Pg.418]    [Pg.158]   
See also in sourсe #XX -- [ Pg.59 ]




SEARCH



Atmospheric-pressure chemical ionization mass spectroscopy

Chemical ionization

Chemical spectroscopy

Ionization spectroscopy

Ionized chemical

Mass chemical ionization

Mass spectroscopy

Mass spectroscopy ionization

© 2024 chempedia.info