Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quadrupole methods

For high-throughput analysis, it is important to increase the specihcity of each bioanalytical method. The enhancement of chromatographic resolution presents various limitations. Better selectivity can be obtained with TOF mass analyzers that routinely provide more than 5000 resolution (full width at half-mass or FWHM). The enhanced selectivity of a TOF MS is very attractive for problems such as matrix suppression and metabolite interference. In one report of quantitative analysis using SRM, TOF appeared less sensitive than triple quadrupole methods but exhibited comparable dynamic range with acceptable precision and accuracy.102... [Pg.328]

Sarin and soman have been shown to bind to a tyrosine residue present in a blood protein (51). The precise site of this residue has not yet been confirmed but it is associated with the albumin fraction. An LC/ESI/MS/MS (triple quadrupole) method was developed for its detection after digestion of the albumin fraction with Pronase and clean up on a C18 SPE (solid-phase extraction) cartridge. A... [Pg.304]

These experimental requirements are designed to overcome or, at least, minimize the problem of electrode polarization at low frequencies. It is important to stress that the electrode impedance dominates over that of the sample at sufficiently low frequencies, (jrosse and Tirado [77] have recently introduced a method (the quadrupole method), in which the correction for electrode polarization is optimized by following a suitable measurement routine. Finally, it has been shown that the so-called logarithmic derivative method can help in separating the effect of the electrodes from the true relaxation of the suspension permittivity [78]. Figure 3.13 allows the comparison between the accuracies achieved with the different procedures. [Pg.65]

Because of difficulties in calculating the non-adiabatic conpling terms, this method did not become very popular. Nevertheless, this approach, was employed extensively in particular to simulate spectroscopic measurements, with a modification introduced by Macias and Riera [47,48]. They suggested looking for a symmetric operator that behaves violently at the vicinity of the conical intersection and use it, instead of the non-adiabatic coupling term, as the integrand to calculate the adiabatic-to-diabatic transformation. Consequently, a series of operators such as the electronic dipole moment operator, the transition dipole moment operator, the quadrupole moment operator, and so on, were employed for this purpose [49,52,53,105]. However, it has to be emphasized that immaterial to the success of this approach, it is still an ad hoc procedure. [Pg.677]

The range of systems that have been studied by force field methods is extremely varied. Some force fields liave been developed to study just one atomic or molecular sp>ecies under a wider range of conditions. For example, the chlorine model of Rodger, Stone and TUdesley [Rodger et al 1988] can be used to study the solid, liquid and gaseous phases. This is an anisotropic site model, in which the interaction between a pair of sites on two molecules dep>ends not only upon the separation between the sites (as in an isotropic model such as the Lennard-Jones model) but also upon the orientation of the site-site vector with resp>ect to the bond vectors of the two molecules. The model includes an electrostatic component which contciins dipwle-dipole, dipole-quadrupole and quadrupole-quadrupole terms, and the van der Waals contribution is modelled using a Buckingham-like function. [Pg.249]

There are a variety of possible linked scanning methods, but only those in more frequent use are discussed here. They differ from the linked scanning methods used in triple quadrupole instruments and ion traps in that two of the three fields (V, E, and B) are scanned simultaneously and automatically under computer control. The most common methods are listed in Table 34.1, which also defines the type of scanning with regard to precursor and product ions. [Pg.240]

Most ion sources produce singly charged ions, i.e., z = I and the ranges shown here apply to such ions. Matrix assisted methods may produce ions with r > 1. When = 1, m/z. = m, viz., mass can be measured directly. An ES ion source produces ions with z > 1 and this effectively extends the mass ranges that can be examined. For example, with z = 1 and m = 10,000, the m/z value is 10,000 and this would be beyond tbe capabilities of a quadrupole instrument. [Pg.282]

Each type of mass spectrometer has its associated advantages and disadvantages. Quadrupole-based systems offer a fairly simple ion optics design that provides a certain degree of flexibility with respect to instrument configuration. For example, quadrupole mass filters are often found in hybrid systems, that is, coupled with another surface analytical method, such as electron spectroscopy for chemical analysis or scanning Auger spectroscopy. [Pg.552]

QCI methods 117 QCISD keywords 9,114 E4T option 186 quadratic Cl methods 114 quadrupole moment 21 quotation li... [Pg.301]

With only s- and p-functions present, the two-centre two-electron integrals can be modelled by multipoles up to order 2 (quadrupoles), however, with d-functions present multipoles up to order 4 must be included. In MNDO/d all multipoles beyond order 2 are neglected. The resulting MNDO/d method typically employs 15 parameters per atom, and it currently contains parameters for the following elements (beyond those already present in MNDO) Na, Mg, Al, Si, P, S, Cl, Br, 1, Zn, Cd and Hg. [Pg.90]

Cations exchanged into the interlayers of expandable clays (smectites) are comparatively easy to study with NMR methods because the cations become major components of the phase and their concentrations are often several wt %. In addition to Cs Li, Na, K, and Cd have been studied by NMR. We have chosen to investigate Cs because it is a significant component of nuclear waste, because it provides an end-member case as the least electronegative cation, and because it has desirable nuclear properties (100% abundance, relatively high frequency, 65.5 MHz at H = 11.7 T, and small quadrupole moment)... [Pg.158]

Tandem quadrupole and magnetic-sector mass spectrometers as well as FT-ICR and ion trap instruments have been employed in MS/MS experiments involving precursor/product/neutral relationships. Fragmentation can be the result of a metastable decomposition or collision-induced dissociation (CID). The purpose of this type of instrumentation is to identify, qualitatively or quantitatively, specific compounds contained in complex mixtures. This method provides high sensitivity and high specificity. The instrumentation commonly applied in GC/MS is discussed under the MS/MS Instrumentation heading, which appears earlier in this chapter. [Pg.17]

Tandem mass spectrometry (MS/MS) is a method for obtaining sequence and structural information by measurement of the mass-to-charge ratios of ionized molecules before and after dissociation reactions within a mass spectrometer which consists essentially of two mass spectrometers in tandem. In the first step, precursor ions are selected for further fragmentation by energy impact and interaction with a collision gas. The generated product ions can be analyzed by a second scan step. MS/MS measurements of peptides can be performed using electrospray or matrix-assisted laser desorption/ionization in combination with triple quadruple, ion trap, quadrupole-TOF (time-of-flight), TOF-TOF or ion cyclotron resonance MS. Tandem... [Pg.1191]


See other pages where Quadrupole methods is mentioned: [Pg.303]    [Pg.657]    [Pg.303]    [Pg.657]    [Pg.345]    [Pg.213]    [Pg.105]    [Pg.243]    [Pg.281]    [Pg.21]    [Pg.6]    [Pg.463]    [Pg.612]    [Pg.622]    [Pg.127]    [Pg.86]    [Pg.151]    [Pg.173]    [Pg.12]    [Pg.290]    [Pg.157]    [Pg.187]    [Pg.188]    [Pg.188]    [Pg.190]    [Pg.194]    [Pg.204]    [Pg.205]    [Pg.1029]    [Pg.30]    [Pg.356]    [Pg.371]    [Pg.308]    [Pg.286]    [Pg.16]   
See also in sourсe #XX -- [ Pg.271 , Pg.274 , Pg.279 , Pg.282 ]




SEARCH



© 2024 chempedia.info