Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid electrolytes reactions with electrodes

Many electrochemical conversions of solid compounds and materials, including for example the corrosion of metals and alloys or the electrochemical conversions of most battery materials, take place within a liquid electrolyte environment, with the classic approach to investigation comprising macro-sized electrodes. However, in order to obtain a comprehensive understanding ofthe mechanism ofthese solid-state electrochemical reactions, the simple technique of immobilizing small amounts of a solid compound/material on an inert electrode surface provides an easy, yet sometimes exclusive, access to their study. In this chapter is presented a survey of the recent developments of this approach, which is referred to as the voltammetry of immobilized microparticles (VIM). Attention is also focused on progress in the field of theoretical descriptions of solid-state electrochemical reactions. [Pg.179]

Conventional batteries consist of a liquid electrolyte separating two solid electrodes. In the Na/S battery this is inverted a solid electrolyte separates two liquid electrodes a ceramic tube made from the solid electrolyte sodium /5-alumina (p. 249) separates an inner pool of molten. sodium (mp 98°) from an outer bath of molten sulfur (mp 119°) and allows Na" " ions to pass through. The whole system is sealed and is encased in a stainless steel canister which also serves as the sulfur-electrode current collector. Within the battery, the current is passed by Na+ ions which pass through the solid electrolyte and react with the sulfur. The cell reaction can be written formally as... [Pg.678]

Electrochemical reactors (cells, tanks) are used for the practical realization of electrolysis or the electrochemical generation of electrical energy. In developing such reactors one must take into account the purpose of the reactor as well as the special features of the reactions employed in it. Most common is the classical reactor type with plane-parallel electrodes in which positive and negative electrodes alternate and all electrodes having the same polarity are connected in parallel. Reactors in which the electrodes are concentric cylinders and convection of the liquid electrolyte can be realized by rotation of one of the electrodes are less common. In batteries, occasionally the electrodes are in the form of two long ribbons with a separator in between which are wound up as a double spiral. [Pg.327]

In electroanalysis, the techniques are pre-eminently based on processes that take place when two separate poles, the so-called electrodes, are in contact with a liquid electrolyte, which usually is a solution of the substance to be analysed, the analyte. By means of electrometry, i.e., by measuring the electrochemical phenomena occurring or intentionally generated, one obtains signals from which chemical-analytical data can be derived through calibration. Often electrometry (e.g., potentiometry) is applied in order to follow a reaction that goes to completion (e.g., a titration), which essentially represents a stoichiometric method, so that the electrometry merely acts as an end-point indicator of the reaction (which means a potentiometric titration). The electrochemical phenomena in electroanalysis, whether they take place in the solution or at the electrodes, are often complicated and their explanation requires a systematic treatment of electroanalysis. [Pg.20]

Electrochemical processes are always heterogeneous and confined to the electrochemical interface between a solid electrode and a liquid electrolyte (in this chapter always aqueous). The knowledge of the actual composition of the electrode surface, of its electronic and geometric structure, is of particular importance when interpreting electrochemical experiments. This information cannot be obtained by classical electrochemical techniques. Monitoring the surface composition before, during and after electrochemical reactions will support the mechanism derived for the process. This is of course true for any surface sensitive spectroscopy. Each technique, however, has its own spectrum of information and only a combination of different surface spectroscopies and electrochemical experiments will come up with an almost complete picture of the electrochemical interface. XPS is just one of these techniques. [Pg.77]

The functions of porous electrodes in fuel cells are 1) to provide a surface site where gas/liquid ionization or de-ionization reactions can take place, 2) to conduct ions away from or into the three-phase interface once they are formed (so an electrode must be made of materials that have good electrical conductance), and 3) to provide a physical barrier that separates the bulk gas phase and the electrolyte. A corollary of Item 1 is that, in order to increase the rates of reactions, the electrode material should be catalytic as well as conductive, porous rather than solid. The catalytic function of electrodes is more important in lower temperature fuel cells and less so in high-temperature fuel cells because ionization reaction rates increase with temperature. It is also a corollary that the porous electrodes must be permeable to both electrolyte and gases, but not such that the media can be easily "flooded" by the electrolyte or "dried" by the gases in a one-sided manner (see latter part of next section). [Pg.18]

Examination of the behaviour of a dilute solution of the substrate at a small electrode is a preliminary step towards electrochemical transformation of an organic compound. The electrode potential is swept in a linear fashion and the current recorded. This experiment shows the potential range where the substrate is electroactive and information about the mechanism of the electrochemical process can be deduced from the shape of the voltammetric response curve [44]. Substrate concentrations of the order of 10 molar are used with electrodes of area 0.2 cm or less and a supporting electrolyte concentration around 0.1 molar. As the electrode potential is swept through the electroactive region, a current response of the order of microamperes is seen. The response rises and eventually reaches a maximum value. At such low substrate concentration, the rate of the surface electron transfer process eventually becomes limited by the rate of diffusion of substrate towards the electrode. The counter electrode is placed in the same reaction vessel. At these low concentrations, products formed at the counter electrode do not interfere with the working electrode process. The potential of the working electrode is controlled relative to a reference electrode. For most work, even in aprotic solvents, the reference electrode is the aqueous saturated calomel electrode. Quoted reaction potentials then include the liquid junction potential. A reference electrode, which uses the same solvent as the main electrochemical cell, is used when mechanistic conclusions are to be drawn from the experimental results. [Pg.15]

One of the problems encountered with the Werth cell was an increase in resistance with cycling. This may have been caused in part by the /3-alumina reacting with the acidic sodium chloroaluminate melt. Coetzer had the idea of using transition metal chlorides as a positive electrode and chose a basic sodium chloroaluminate melt as the liquid electrolyte. This is compatible with /3-alumina, and a new class of secondary cells based upon the reaction between sodium metal and transition metal chloride has resulted from this work. Collectively, the term Zebra battery is used to describe this new class of cell. [Pg.266]

Step 2 is usually limited by the permeability of the membrane. In certain sensor designs, the membrane is eliminated to avoid this step. Step 4 refers to the diffusion of the solvated gas in the electrolyte to the electrode-electrolyte interface. Diffusion in liquids is often considerably slower than diffusion across a membrane. If the sensing electrode is flooded with electrolyte, the response is slow because the gas must diffuse through the electrolyte before reaching the reaction surface. [Pg.301]

Electrochemical reactions occur at the interface between two phases with sufficiently different conduction behavior, i.e. a predominantly ion-conducting electrolyte phase and an electrode phase with predominantly electronic conduction. Among all possible types of interfaces the most intensively applied are solid metal liquid electrolyte and solid metal solid electrolyte. Electrode systems which have been much less studied are those formed by combining either a solid or liquid conducting phase with a low-temperature gas discharge (plasma). [Pg.259]

Table 2.1 lists half-reactions for electrodes of the second type and their potential for unit activities. These electrodes have, in the majority of cases, their own electrolyte associated with them. So, to calculate the potential of a cell in relation to the standard hydrogen electrode it is necessary to take the liquid junction potential between the two electrolytes into account (Section 2.10). [Pg.24]

A unique approach in nonaqueous electrochemistry which may be applicable to several fields, especially for batteries, was recently presented by Koch et al. (private communication). They showed that it is possible to use solid matrices based on lithium salts contaminated with organic solvents as electrolyte systems. These systems demonstrate several advantages over liquid systems based on the same solvents and salts as solutions. Their electrochemical windows are larger, especially in the anodic direction (oxidation reactions), and it appears that their reactivity toward active electrodes (e.g., Li, Li—C) is much lower than that of the liquid electrolyte systems. [Pg.55]

The potential of an electrode is determined in combination with a second constant electrode which does not belong to the actual electrolytic system. This subsidiary or standard electrode, whose potential is either arbitrarily taken, as zero or has a certain absolute value, is connected by a siphon with the liquid surrounding the experimental electrode. The electromotive force of this galvanic combination is then measured by one of the well-known methods, with a galvanometer or capillary electrometer. If the potential difference of the standard electrode is correctly subtracted from the obtained value, the difference in potential of the reaction electrode, based on the agreed-upon zero) value of the potential, is... [Pg.45]

Galvanic cell (or galvanic element) — A galvanic cell is an - electrochemical cell in which reactions occur spontaneously at the -> electrodes when they are connected externally by a conductor. In these cells chemical energy can be converted into electrical energy [i, ii]. The galvanic cell consists of two electrodes, i.e., electron conductors (-> metal, carbon, semiconductor etc.) in contact with one or more ionic conductors (which may be - electrolyte solutions, ionic liquids, electrolyte melts, or - solid electrolytes). [Pg.289]

Can one explain this importance of the slag Measurements of conductance as a function of temperature and of transport number indicate that the slag is an ionic conductor (liquid electrolyte). In the metal-slag interface, one has the classic situation (Fig. 5.81) of a metal (i.e., iron) in contact with an electrolyte (i.e., the molten oxide electrolyte, slag), with all the attendant possibilities of corrosion of the metal. Corrosion of metals is usually a wasteful process, but here the current-balancing partial electrodic reactions that make up a corrosion situation are indeed the very factors that control the equilibrium of various components (e.g., S ) between slag and metal and hence the properties of the metal, which depend greatly on its trace impurities. For example,... [Pg.752]


See other pages where Liquid electrolytes reactions with electrodes is mentioned: [Pg.246]    [Pg.322]    [Pg.230]    [Pg.306]    [Pg.426]    [Pg.539]    [Pg.539]    [Pg.544]    [Pg.330]    [Pg.329]    [Pg.439]    [Pg.521]    [Pg.583]    [Pg.322]    [Pg.322]    [Pg.286]    [Pg.292]    [Pg.17]    [Pg.556]    [Pg.267]    [Pg.50]    [Pg.1300]    [Pg.387]    [Pg.326]    [Pg.35]    [Pg.65]    [Pg.121]    [Pg.3]    [Pg.17]    [Pg.230]    [Pg.237]    [Pg.293]    [Pg.299]    [Pg.538]    [Pg.149]    [Pg.586]   
See also in sourсe #XX -- [ Pg.287 , Pg.288 ]




SEARCH



Electrode electrolytes

Electrode reactions

Electrolytic reactions (

Liquid electrolytes

© 2024 chempedia.info