Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactions potentials

Pople J A, Krishnan R, Schlegel H B and Binkley J S 1978 Electron correlation theories and their application to the study of simple reaction potential surfaces int. J. Quantum Chem. 14 545-60... [Pg.2198]

Transition stale search algorithms rather climb up the potential energy surface, unlike geometry optimi/.ation routines where an energy minimum is searched for. The characterization of even a simple reaction potential surface may result in location of more than one transition structure, and is likely to require many more individual calculations than are necessary to obtain et nilibrinm geometries for either reactant or product. [Pg.17]

Chapter 12, to symmetry-caused energy barriers on the H2CO ==> H2 + CO reaction potential energy surface. [Pg.187]

It should be stressed that although these symmetry considerations may allow one to anticipate barriers on reaction potential energy surfaces, they have nothing to do with the thermodynamic energy differences of such reactions. Symmetry says whether there will be symmetry-imposed barriers above and beyond any thermodynamic energy differences. The enthalpies of formation of reactants and products contain the information about the reaction s overall energy balance. [Pg.191]

Review of process chemistiy, including reac tions, side reactions, heat of reaction, potential pressure buildup, and characteristics of intermediate streams... [Pg.2311]

For a simple bistable reaction potential, it is clear that maximum curvamre along the reaction pathway will occur near the extrema—the minima and the barrier top. The path endpoints are typically chosen to sit in the reactant and product minima, and in such a case the maximum error will result from the path straddling the barrier top as in Figure 8. Of course, this is the error made in a single segment of the pathway. For a general potential the pathway will consist of multiple segments and may have many barriers. [Pg.216]

Explosion, fire Violent reaction Potential for Provide warning... [Pg.631]

Figure 7-61. Reactive system screening tool (RSST) for evaluating runaway reaction potential. By permission, Fauske and Associates, Inc. Figure 7-61. Reactive system screening tool (RSST) for evaluating runaway reaction potential. By permission, Fauske and Associates, Inc.
Corrosion or mixed potentials (a) Active corrosion in acid solutions (b) Passive metal in acid solutions Potential dependent on the redox potential of the solution and the kinetics of the anodic and cathodic reactions. Potential dependent on the kinetics of the h.e.r. on the bare metal surface. Potential is that of an oxide-hlmed metal, and is dependent on the redox potential of the solution. Zn in HCI Stainless steel in oxygenated H2SO4... [Pg.1242]

In order for this concept to be applicable, the matrix and the reactant phase must be thermodynamically stable in contact with each other. One can evaluate this possibility if one has information about the relevant phase diagram — which typically involves a ternary system — as well as the titration curves of the component binary systems. In a ternary system, the two materials must lie at comers of the same constant-potential tie-triangle in the relevant isothermal ternary phase diagram in order to not interact. The potential of the tie-triangle determines the electrode reaction potential, of course. [Pg.375]

An additional requirement is that the reactant material must have two phases present in the tie-triangle, but the matrix phase only one. This is another way of saying that the stability window of the matrix phase must span the reaction potential, but that the binary titration curve of the reactant material must have a plateau at the tie-triangle potential. It has been shown that one can evaluate the possibility that these conditions are met from knowledge of the binary titration curves, without having to perform a large number of ternary experiments. [Pg.375]

Cathode material Electroactive substance Reaction potential — E (V) Electrical yield (%) benzene (molar yield) (%) aniline (molar yield) (%) 1,4-cyclo-hexadiene (molar yield ) (%)... [Pg.1008]

The elucidation of the X-ray structure of chymotrypsin (Ref. 1) and in a later stage of subtilisin (Ref. 2) revealed an active site with three crucial groups (Fig. 7.1)-the active serine, a neighboring histidine, and a buried aspartic acid. These three residues are frequently called the catalytic triad, and are designated here as Aspc Hisc Serc (where c indicates a catalytic residue). The identification of the location of the active-site groups and intense biochemical studies led to several mechanistic proposals for the action of serine proteases (see, for example, Refs. 1 and 2). However, it appears that without some way of translating the structural information to reaction-potential surfaces it is hard to discriminate between different alternative mechanisms. Thus it is instructive to use the procedure introduced in previous chapters and to examine the feasibility of different... [Pg.171]

The entropic hypothesis seems at first sight to gain strong support from experiments with model compounds of the type listed in Table 9.1. These compounds show a huge rate acceleration when the number of degrees of freedom (i.e., rotation around different bonds) is restricted. Such model compounds have been used repeatedly in attempts to estimate entropic effects in enzyme catalysis. Unfortunately, the information from the available model compounds is not directly transferable to the relevant enzymatic reaction since the observed changes in rate constant reflect interrelated factors (e.g., strain and entropy), which cannot be separated in a unique way by simple experiments. Apparently, model compounds do provide very useful means for verification and calibration of reaction-potential surfaces... [Pg.221]

Hydrogen abstraction reactions potential surfaces for, 25-26,26,41 resonance structures for, 24 Hydrogen atom, 2 Hydrogen bonds, 169,184 Hydrogen fluoride, 19-20, 20,22-23 Hydrogen molecules, 15-18 energy of, 11,16,17 Hamiltonian for, 4,15-16 induced dipoles, 75,125 lithium ion effect on, 12... [Pg.232]

It becomes intriguing to inquire what leads to the observed contrasteric reactivity. Intensive studies to disclose the origin of Tt-facial selectivity examined various dienes having unsymmetrical 7t-plane, since their reactions potentially generate five or more consecutive stereocenters with one operation. In this chapter, we review the theories to disclose the origin of 7t-facial selectivity in Diels-Alder reactions of the substrates having unsymmetrical 7t-planes. Recent works are discussed. [Pg.185]

In the following, after a brief description of the experimental setup and procedures (Section 13.2), we will first focus on the adsorption and on the coverage and composition of the adlayer resulting from adsorption of the respective Cj molecules at a potential in the Hup range as determined by adsorbate stripping experiments (Section 13.3.1). Section 13.3.2 deals with bulk oxidation of the respective reactants and the contribution of the different reaction products to the total reaction current under continuous electrolyte flow, first in potentiodynamic experiments and then in potentiostatic reaction transients, after stepping the potential from 0.16 to 0.6 V, which was chosen as a typical reaction potential. The results are discussed in terms of a mechanism in which, for methanol and formaldehyde oxidation, the commonly used dual-pathway mechanism is extended by the possibility that reaction intermediates can desorb as incomplete oxidation products and also re-adsorb for further oxidation (for the formic acid oxidation mechanism, see [Samjeske and Osawa, 2005 Chen et al., 2006a, b Miki et al., 2004]). [Pg.415]

However, even the best experimental technique typically does not provide a detailed mechanistic picture of a chemical reaction. Computational quantum chemical methods such as the ab initio molecular orbital and density functional theory (DFT) " methods allow chemists to obtain a detailed picture of reaction potential energy surfaces and to elucidate important reaction-driving forces. Moreover, these methods can provide valuable kinetic and thermodynamic information (i.e., heats of formation, enthalpies, and free energies) for reactions and species for which reactivity and conditions make experiments difficult, thereby providing a powerful means to complement experimental data. [Pg.266]

The contents of this handbook should be utilized as a guide and in addition to sound clinical judgment. Consult full prescribing information and take into consideration each drug s pharmacokinetic profile, contraindications, warnings, precautions, adverse reactions, potential drug interactions, and monitoring parameters before use. [Pg.213]

It is important to review patient medication profiles for drugs that may aggravate sleep disorders. Patients should be monitored for adverse drug reactions, potential drug-drug interactions, and adherence to their therapeutic regimens. [Pg.621]

Scheme 3.29 Reactions potentially explaining poor conversion with preformed reagent3. ... Scheme 3.29 Reactions potentially explaining poor conversion with preformed reagent3. ...
Bernardi F, Olivucci M, Robb MA (1990) Predicting forbidden and allowed cycloaddition reactions potential surface topology and its rationalization. Acc Chem Res 23 405... [Pg.327]

Thus, there is a great deal of information on the reaction potential of HCN and products derived from it. Gaps in our knowledge may perhaps be closed in the next few years by research results on the chemistry occurring on other planets or in interstellar matter. As early as 1984, Jim Ferris published a review article HCN and... [Pg.106]

Imaging can also be useful for multiprobe detection, for example using fluorescent probes together with CL reactions. Potentially it is possible to detect first a fluorescent probe, and second detect the CL probe by adding the CL substrate. Probes marked with different CL labels, usually enzymes requiring different substrates, can also be used at the same time, provided the first CL substrate is removed before a second CL analysis is performed by adding another substrate. [Pg.493]


See other pages where Reactions potentials is mentioned: [Pg.871]    [Pg.2715]    [Pg.10]    [Pg.307]    [Pg.307]    [Pg.502]    [Pg.100]    [Pg.305]    [Pg.787]    [Pg.41]    [Pg.218]    [Pg.412]    [Pg.356]    [Pg.417]    [Pg.176]    [Pg.115]    [Pg.241]    [Pg.69]    [Pg.174]    [Pg.185]    [Pg.8]    [Pg.87]   
See also in sourсe #XX -- [ Pg.87 ]

See also in sourсe #XX -- [ Pg.59 ]

See also in sourсe #XX -- [ Pg.558 ]

See also in sourсe #XX -- [ Pg.2 , Pg.4 , Pg.59 , Pg.61 , Pg.70 , Pg.75 , Pg.85 , Pg.93 , Pg.139 ]

See also in sourсe #XX -- [ Pg.237 ]




SEARCH



© 2024 chempedia.info