Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Limits pesticide residues

The U.S. FDA monitors foods for half of the approximately 300 pesticides having official EPA tolerances as weU as a number of other pesticides that have no official tolerances. Multiresidue methods, most of which are based on chromatography protocols, are employed (7). Not aU pesticides are monitored on aU foods and sampling (qv) is purposely biased to catch possible problems. The overaU iacidence of iUegal pesticide residue is, however, quite smaU 1% for domestic surveiUance samples and 3% for imported foods. The methods employed can usuaUy quantify residues present at 0.01 ppm. Quantitation limits range from 0.005 to 1 ppm. [Pg.241]

Groundwater has also been surveyed for methyl parathion. In a study of well water in selected California communities, methyl parathion was not detected (detection limit of 5 ppb) in the 54 wells sampled (Maddy et al. 1982), even though the insecticide had been used in the areas studied for over 15 years. An analysis of 358 wells in Wisconsin produced the same negative results (Krill and Sonzogni 1986). In a sampling of California well water for pesticide residues, no methyl parathion was detected in any of the well water samples (California EPA 1995). In a study to determine the residue levels of pesticides in shallow groundwater of the United States, water samples from 1,012 wells and 22 springs were analyzed. Methyl parathion was not detected in any of the water samples (Kolpin et al. 1998). In a study of water from near-surface aquifers in the Midwest, methyl parathion was not detected in any of the water samples from 94 wells that were analyzed for pesticide levels (Kolpin et al. 1995). [Pg.158]

Schilter B, Renwick AG, Huggett AC. 1996. Limits for pesticide residues in infant foods A safety-based proposal. Regul Toxicol Pharmacol 24 126-140. [Pg.229]

Limited pesticide must be applied to protect the crops from disease and insect pests in order to cultivate healthy crops, according to recommendations for pest control. However, crop protection agents that could interfere with the residue analyses must be used. [Pg.44]

Best practices in establishing detection and quantification limits for pesticide residues in foods... [Pg.60]

In this article, an analytical method is defined as series of procedures from receipt of a sample to final determination of the residue. Validation is the process of verifying that a method is fit for purpose. Typically, validation follows completion of the development of a method. Validated analytical data are essential for monitoring of pesticide residues and control of legal residue limits. Analysts must provide information to demonstrate that a method intended for these purposes is capable of providing adequate specificity, accuracy and precision, at relevant analyte concentrations and in all matrices analyzed. [Pg.95]

The principles of validation of residue methods for food, water and soil are generally the same. However, not all procedures and requirements are identical. From the public s point of view, the information on residues in food is probably the most important task. Compared with the other two areas (water and soil), the food sector is characterized by the largest number of regulations and legal limits. Therefore, this overview of validation requirements of enforcement methods will focus on methods for pesticide residues in food. [Pg.95]

FFDCA, among other things, assured the safety of processed foods by establishing safe tolerance limits for pesticide residues in processed foods. The mles and interpretation of the mles were not always consistent between these two government offices. [Pg.136]

Codex Guideline MRL(1)-1999, List of Codex Maximum Residue Limits for Pesticides Residues in Eood , Codex Alimentarius Commission, Washington, DC (1999). [Pg.197]

Pesticide residues consist of chemicals that might occur in a commodity as a result of application of a pesticide. Such chemicals typically correspond to compounds for which a regulatory agency has or will set a tolerance, i.e., a maximum residue limit, specific to the commodity. In either a field study or a market basket survey, residues to be determined will be those which result from application of the specific pesticide that the study is intended to support. A market basket survey, however, might be intended to support not just one but several different pesticides of the same or different chemical classes. In addition, a market basket survey might include pesticides not used in the USA but for which import tolerances exist. For example, some uses of the parathion family of pesticides on food products have been abandoned in the USA but remain in other countries that export the products to the USA. A market basket survey offers a means to evaluate actual dietary exposures to residues of such pesticides. In addition, tolerance expressions frequently include multiple compounds, all of which must typically be determined in residue field trials. The sponsor of the market basket survey must decide whether to analyze for all compounds in the applicable tolerance expression or to restrict the program to selected analytes, such as the active ingredient. [Pg.237]

In the modern pesticide residues laboratory, analysts are under ever increasing pressure to (1) increase the range of pesticides which can be sought in a single analysis, (2) improve limits of detection, precision and quantitation, (3) increase confidence in the validity of residues data, (4) provide faster methods, (5) reduce the usage of hazardous solvents and (6) reduce the costs of analysis. [Pg.727]

SFE of fruits and vegetables and meat products has been reported, but the sample preparation techniques necessary to obtain reproducible results are extremely time consuming. Solid absorbents such as Hydromatrix, Extrelut " anhydrous magnesium sulfate or absorbent polymers are required to control the level of water in the sample for the extraction of the nonpolar pesticides. Without the addition of Hydromatrix, nonpolar pesticides cannot penetrate the water barrier between the sample particles and the supercritical CO2. The sample is normally frozen and the addition of dry-ice may be required to reduce losses due to degradation and/or evaporation. Thorough reviews of the advantages and limitations of SFE in pesticide residues... [Pg.730]

Solid-phase sorbents are also used in a technique known as matrix solid-phase dispersion (MSPD). MSPD is a patented process first reported in 1989 for conducting the simultaneous disruption and extraction of solid and semi-solid samples. The technique is rapid and requires low volumes (ca. 10 mL) of solvents. One problem that has hindered further progress in pesticide residues analysis is the high ratio of sorbent to sample, typically 0.5-2 g of sorbent per 0.5 g of sample. This limits the sample size and creates problems with representative sub-sampling. It permits complete fractionation of the sample matrix components and also the ability to elute selectively a single compound or class of compounds from the same sample. Excellent reviews of the practical and theoretical aspects of MSPD " and applications in food analysis were presented by Barker.Torres et reported the use of MSPD for the... [Pg.733]

Specificity is unsurpassed. Traditionally, MS was performed on very large and expensive high-resolution sector instruments operated by experienced specialists. The introduction of low-resolution (1 amu), low-cost, bench-top mass spectrometers in the early 1980s provided analysts with a robust analytical tool with a more universal range of application. Two types of bench-top mass spectrometers have predominated the quadrupole or mass-selective detector (MSD) and the ion-trap detector (ITD). These instruments do not have to be operated by specialists and can be utilized routinely by residue analysts after limited training. The MSD is normally operated in the SIM mode to increase detection sensitivity, whereas the ITD is more suited to operate in the full-scan mode, as little or no increase in sensitivity is gained by using SIM. Both MSDs and ITDs are widely used in many laboratories for pesticide residue analyses, and the preferred choice of instrument can only be made after assessment of the performance for a particular application. [Pg.740]

It is perhaps an indication of the limited success of electrophoretic techniques for the determination of pesticide residues at trace levels that although many papers and reviews on the subject have been published, very few laboratories involved in the routine analysis of residues rely on such techniques for their work. Electrophoretic techniques have suffered because of poor flexibility and sensitivities compared with chromatographic techniques. [Pg.743]

Biosensors may provide the basis for in-field analyses and real-time process analysis. However, biosensors are generally limited to the determination of a limited range of analytes in defined matrices. Enzyme-based biosensors, principally acetylcholinesterase (AChE) inhibition, have been successfully used in environmental analysis for residues of dichlorvos and paraoxon, " carbaryl " and carbofuran. " Immunochemically based biosensors may be the basis for the determination of pesticide residues in liquid samples, principally water and environmental samples, but also fruit juices. The sensors can be linked to transducers, for example based on a piezo-... [Pg.747]


See other pages where Limits pesticide residues is mentioned: [Pg.309]    [Pg.309]    [Pg.141]    [Pg.146]    [Pg.150]    [Pg.214]    [Pg.122]    [Pg.37]    [Pg.517]    [Pg.408]    [Pg.157]    [Pg.517]    [Pg.5]    [Pg.7]    [Pg.14]    [Pg.19]    [Pg.39]    [Pg.73]    [Pg.96]    [Pg.125]    [Pg.300]    [Pg.312]    [Pg.607]    [Pg.608]    [Pg.733]    [Pg.736]    [Pg.740]   
See also in sourсe #XX -- [ Pg.228 , Pg.230 ]




SEARCH



Pesticide limit

Residue limit

Residue pesticidal

© 2024 chempedia.info