Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

LDL measurement

Figure 17 Time course of the antiradical parameters ACL0 and ACW of LDL measured by the PCL method its a-tocopherol content (AT) measured by the HPLC technique and conjugated dienes (LDL-abs. at 234 nm) during Cu2+-initiated oxidation in vitro. (From Ref. 36.)... Figure 17 Time course of the antiradical parameters ACL0 and ACW of LDL measured by the PCL method its a-tocopherol content (AT) measured by the HPLC technique and conjugated dienes (LDL-abs. at 234 nm) during Cu2+-initiated oxidation in vitro. (From Ref. 36.)...
Calibration curves of electrodes optimised for LDL measurements were determined in deionised water via successive addition in the range 1 x 1CT8 to 1 x 1CT3M CsCl. [Pg.985]

It has to be remembered that the results of in vitro and ex vivo studies on the effect of n-3 LC-PUFA on LDL oxidation are equivocal. Many studies showed either no LDL oxidation under fish oil (27-32), or even a decrease in the rate and the extent of oxidation (33,34). These seemingly contradictory findings may be related to the methodology of measuring LDL oxidation, as well as to the actual variable chosen to evaluate LDL susceptibility. To what extent oxidative susceptibility of LDL measured ex vivo reflects oxidative susceptibility in vivo is unknown. [Pg.75]

Cholesterol is biosynthesized in the liver trans ported throughout the body to be used in a va riety of ways and returned to the liver where it serves as the biosynthetic precursor to other steroids But cholesterol is a lipid and isn t soluble in water How can it move through the blood if it doesn t dis solve in if The answer is that it doesn t dissolve but IS instead carried through the blood and tissues as part of a lipoprotein (lipid + protein = lipoprotein) The proteins that carry cholesterol from the liver are called low density lipoproteins or LDLs those that return it to the liver are the high-density lipoproteins or HDLs If too much cholesterol is being transported by LDL or too little by HDL the extra cholesterol builds up on the walls of the arteries caus mg atherosclerosis A thorough physical examination nowadays measures not only total cholesterol con centration but also the distribution between LDL and HDL cholesterol An elevated level of LDL cholesterol IS a risk factor for heart disease LDL cholesterol is bad cholesterol HDLs on the other hand remove excess cholesterol and are protective HDL cholesterol IS good cholesterol... [Pg.1096]

Experimental correlations have been established in a given LDL formulation between foam stability and interfacial tension [33]. For example, Fig. 15 shows the effect of increasing water hardness on plate washing performance of an LAS/AES blend. A small amount of Ca2+ ion helps substantially to stabilize the foam. Under the same conditions interfacial tension is also lowered substantially. The two curves show an inverse relationship where the minimum interfacial tension value corresponds to the optimum level of foam stability as measured by plate washing [33]. [Pg.128]

The antioxidant activities of carotenoids and other phytochemicals in the human body can be measured, or at least estimated, by a variety of techniques, in vitro, in vivo or ex vivo (Krinsky, 2001). Many studies describe the use of ex vivo methods to measure the oxidisability of low-density lipoprotein (LDL) particles after dietary intervention with carotene-rich foods. However, the difficulty with this approach is that complex plant foods usually also contain other carotenoids, ascorbate, flavonoids, and other compounds that have antioxidant activity, and it is difficult to attribute the results to any particular class of compounds. One study, in which subjects were given additional fruits and vegetables, demonstrated an increase in the resistance of LDL to oxidation (Hininger et al., 1997), but two other showed no effect (Chopra et al, 1996 van het Hof et al., 1999). These differing outcomes may have been due to systematic differences in the experimental protocols or in the populations studied (Krinsky, 2001), but the results do indicate the complexity of the problem, and the hazards of generalising too readily about the putative benefits of dietary antioxidants. [Pg.34]

Experimental evidence in humans is based upon intervention studies with diets enriched in carotenoids or carotenoid-contaiifing foods. Oxidative stress biomarkers are measured in plasma or urine. The inhibition of low density lipoprotein (LDL) oxidation has been posmlated as one mechanism by which antioxidants may prevent the development of atherosclerosis. Since carotenoids are transported mainly via LDL in blood, testing the susceptibility of carotenoid-loaded LDL to oxidation is a common method of evaluating the antioxidant activities of carotenoids in vivo. This type of smdy is more precisely of the ex vivo type because LDLs are extracted from plasma in order to be tested in vitro for oxidative sensitivity after the subjects are given a special diet. [Pg.179]

Rgure 2.3 The antioxidant activity of butyiated hydroxytoluene in the presence of exogenous iipid hydroperoxides. The oxidation of LDL was monitored by measuring the increase in absorbance at 234 nm as described in Fig. 2.2 and the lag phase (time before the phase of maximum rate of oxidation) estimated as described by Esterbauer et at. (1989). Samples of LDL were supplemented with the cortcentrations of 13-hydroperoxyoctadecanoic acid (13-HPODE) indicated and in the presence of 3 fM BHT. The lag phase in the absence of BHT for this preparation of LDL was 48 min. [Pg.31]

The lag-phase measurement at 234 nm of the development of conjugated dienes on copper-stimulated LDL oxidation is used to define the oxidation resistance of different LDL samples (Esterbauer et al., 1992). During the lag phase, the antioxidants in LDL (vitamin E, carotenoids, ubiquinol-10) are consumed in a distinct sequence with a-tocopherol as the first followed by 7-tocopherol, thereafter the carotenoids cryptoxanthin, lycopene and finally /3-carotene. a-Tocopherol is the most prominent antioxidant of LDL (6.4 1.8 mol/mol LDL), whereas the concentration of the others 7-tocopherol, /3-carotene, lycopene, cryptoxanthin, zea-xanthin, lutein and phytofluene is only 1/10 to 1/300 of a-tocopherol. Since the tocopherols reside in the outer layer of the LDL molecule, protecting the monolayer of phospholipids and the carotenoids are in the inner core protecting the cholesterylesters, and the progression of oxidation is likely to occur from the aqueous interface inwards, it seems reasonable to assign to a-tocopherol the rank of the front-line antioxidant. In vivo, the LDL will also interact with the plasma water-soluble antioxidants in the circulation, not in the artery wall, as mentioned above. [Pg.47]

Probucol, another di-r-butyl phenol, is an anti-atherosclerotic agent that can suppress the oxidation of low-density lipoprotein (LDL) in addition to lowering cholesterol levels. The antioxidant activity of probucol was measured, using EPR, with oxidation of methyl linoleate that was encapsulated in liposomal membranes or dissolved in hexane. Probucol suppressed ffee-radical-mediated oxidation. Its antioxidant activity was 17-fold less than that of tocopherol. This difference was less in liposomes than in hexane solution. Probucol suppressed the oxidation of LDL as efficiently as tocopherol. This work implies that physical factors as well as chemical reactivity are important in determining overall lipid peroxidation inhibition activity (Gotoh et al., 1992). [Pg.270]

If serum triglycerides are greater than 400 mg/dL (4.52 mmol/L), this formula becomes inaccurate and LDL cholesterol must be directly measured.3... [Pg.176]

Often you need to carry forward data to a specific time point due to holes or sparseness of data. The previous example on determining baseline cholesterol level provides an excellent context for this problem. Assume that you have several cholesterol readings of HDL, LDL, and triglycerides for patients before they take an experimental pill designed to reduce cholesterol levels. For each cholesterol parameter, you want the last observation carried forward so long as the measures occur within a five-day window before the pill is taken. Here are some sample data that illustrate the problem ... [Pg.86]

This method is also used to measure ex vivo low-density lipoprotein (LDL) oxidation. LDL is isolated fresh from blood samples, oxidation is initiated by Cu(II) or AAPH, and peroxidation of the lipid components is followed at 234 nm for conjugated dienes (Prior and others 2005). In this specific case the procedure can be used to assess the interaction of certain antioxidant compounds, such as vitamin E, carotenoids, and retinyl stearate, exerting a protective effect on LDL (Esterbauer and others 1989). Hence, Viana and others (1996) studied the in vitro antioxidative effects of an extract rich in flavonoids. Similarly, Pearson and others (1999) assessed the ability of compounds in apple juices and extracts from fresh apple to protect LDL. Wang and Goodman (1999) examined the antioxidant properties of 26 common dietary phenolic agents in an ex vivo LDL oxidation model. Salleh and others (2002) screened 12 edible plant extracts rich in polyphenols for their potential to inhibit oxidation of LDL in vitro. Gongalves and others (2004) observed that phenolic extracts from cherry inhibited LDL oxidation in vitro in a dose-dependent manner. Yildirin and others (2007) demonstrated that grapes inhibited oxidation of human LDL at a level comparable to wine. Coinu and others (2007) studied the antioxidant properties of extracts obtained from artichoke leaves and outer bracts measured on human oxidized LDL. Milde and others (2007) showed that many phenolics, as well as carotenoids, enhance resistance to LDL oxidation. [Pg.273]

LDL isolation is used for measurement of its oxidizability under the influence of various factors in a model system using CuCl2 (final concentration 3.3 pM) as the initiator of lipid peroxidation. Oxidation of LDL was followed by changes in optical density at 234 nm (conjugated dienes formation assay) [37],... [Pg.518]

As mentioned earlier, oxidation of LDL is initiated by free radical attack at the diallylic positions of unsaturated fatty acids. For example, copper- or endothelial cell-initiated LDL oxidation resulted in a large formation of monohydroxy derivatives of linoleic and arachi-donic acids at the early stage of the reaction [175], During the reaction, the amount of these products is diminished, and monohydroxy derivatives of oleic acid appeared. Thus, monohydroxy derivatives of unsaturated acids are the major products of the oxidation of human LDL. Breuer et al. [176] measured cholesterol oxidation products (oxysterols) formed during copper- or soybean lipoxygenase-initiated LDL oxidation. They identified chlolcst-5-cnc-3(3, 4a-diol, cholest-5-ene-3(3, 4(3-diol, and cholestane-3 3, 5a, 6a-triol, which are present in human atherosclerotic plaques. [Pg.798]

It has also been shown that LDL oxidation is increased in diabetes. In this connection, Mowri et al. [179] studied the effect of glucose on metal ion-dependent and -independent LDL oxidation. They found that pathophysiological glucose concentrations enhanced copper- and iron-induced LDL oxidation measured via the formation of conjugated dienes. In contrast, glucose had no effect on metal-independent free radical LDL oxidation. Correspondingly,... [Pg.798]

High antioxidative activity carvedilol has been shown in isolated rat heart mitochondria [297] and in the protection against myocardial injury in postischemic rat hearts [281]. Carvedilol also preserved tissue GSL content and diminished peroxynitrite-induced tissue injury in hypercholesterolemic rabbits [298]. Habon et al. [299] showed that carvedilol significantly decreased the ischemia-reperfusion-stimulated free radical formation and lipid peroxidation in rat hearts. Very small I50 values have been obtained for the metabolite of carvedilol SB 211475 in the iron-ascorbate-initiated lipid peroxidation of brain homogenate (0.28 pmol D1), mouse macrophage-stimulated LDL oxidation (0.043 pmol I 1), the hydroxyl-initiated lipid peroxidation of bovine pulmonary artery endothelial cells (0.15 pmol U1), the cell damage measured by LDL release (0.16 pmol l-1), and the promotion of cell survival (0.13 pmol l-1) [300]. SB 211475 also inhibited superoxide production by PMA-stimulated human neutrophils. [Pg.885]

A fasting lipoprotein profile including total cholesterol, LDL, HDL, and triglycerides should be measured in all adults 20 years of age or older at least once every 5 years. [Pg.112]

Short-term evaluation of therapy for hyperlipidemia is based on response to diet and drug treatment as measured in the clinical laboratory by total cholesterol, LDL-C, HDL cholesterol, and triglycerides. [Pg.123]

Fig. 9.4. One pure antiestrogen, ICI 182780, increased the resistance of LDL particles to oxidation. Isolated LDL particles were subjected to oxidation by copper, and the lag time to oxidation, as measured by changes in optical density, increased as a function of the concentration of ICI 182780 (upper panel). The increase in the lag time (min) determined by the different concentrations of ICI 182780 is shown in the lower panel... [Pg.226]

In this method, an entire calibration curve is measured for the primary ion in a constant background of interfering ion. aj(BG) is the activity of the constant interfering ion in the background. afiDL) is the low detection limit (LDL) of the Nernstian response curve of the electrode as a function of the primary-ion activity. In the mixed interference method the selectivity is calculated from the following equation ... [Pg.653]

A high plasma concentration of LDL (usually measured as LDL-cholesterol) is a risk factor for the development of atheroma whereas a high concentration of HDL is an anti-risk factor for cardiovascular disease (CVD). Fundamental discoveries relating to cholesterol metabolism and the importance of the LDL receptor made by Nobel laureates Joseph Goldstein and Michael Brown led to an understanding of the role of LDL in atherosclerosis. The impact of HDL in reducing CVD risk is often explained by the removal of excess cholesterol from tissues and its return to the liver, a process known as reverse cholesterol transport. However, evidence from research by Gillian Cockerill and others shows that HDL has a fundamental anti-inflammatory role to play in cardioprotection. [Pg.165]

Although both LDL and HDL are primarily cholesterol particles, most of the cholesterol measured in the blood is assodated with LDL. The normal role of LDL is to deliver cholesterol to tissues for biosynthesis. When a cell is repairing membrane or dividing, the cholesterol is required for membrane synthesis. Bile acids and salts are made from cholesterol in the liver, and many other tissues require some cholesterol for steroid synthesis. As shown in Figure 1-15-6, about 80% of LDL are picked up by hepatocytes, the remainder by peripheral tissues. ApoB-100 is the only apoprotein on LDL, and endocytosis of LDL is mediated by apoB-100 receptors (LDL receptors) clustered in areas of cell membranes lined with the protdn clathrin. [Pg.214]


See other pages where LDL measurement is mentioned: [Pg.983]    [Pg.987]    [Pg.146]    [Pg.429]    [Pg.983]    [Pg.987]    [Pg.146]    [Pg.429]    [Pg.346]    [Pg.1090]    [Pg.227]    [Pg.289]    [Pg.49]    [Pg.49]    [Pg.106]    [Pg.70]    [Pg.176]    [Pg.316]    [Pg.48]    [Pg.14]    [Pg.521]    [Pg.852]    [Pg.883]    [Pg.885]    [Pg.885]    [Pg.207]    [Pg.288]    [Pg.247]    [Pg.587]   
See also in sourсe #XX -- [ Pg.151 ]




SEARCH



LDL

© 2024 chempedia.info