Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Latex structure

Natural rubber latex, obtained from rubber trees, is converted to its final form by a process known as vulcanization, first discovered by Charles Goodyear in 1839. Vulcaiuzation is basically a crosslinking reaction of double bonds in the latex structure with sulfur. The polymerization of butadiene with itself or with other vinyl monomers results in a material that like natural latex, still contains double bonds. Thus, synthetic rubber made from butadiene can be processed and vulcanized just like natural rubber. [Pg.135]

The t -potential and the surface charge of pigment particles in a polymer solution has a direct effect on the suspension stability [194]. Ultra-fine pigment particles (< 0.05 pm) were formed during dispersion, which both adsorb on larger pigment particles and are included in the latex structure. Here, a steric factor increases the sedimentation stability of the suspensions additionally. [Pg.569]

Like almost all paints and lacquers, water-based dispersions also contain other components besides binder, pigment, and solvent. For example, the latex structure is favorably influenced by addition of poly(acrylamide). Added silicones reduce foaming. The flow properties are improved by hydroxyethyl cellulose or vegetable gums. The desired thixotropic poperties are produced by addition of bentonite, zirconium carbonate, or triethanolamine aluminate, etc. [Pg.787]

Application of Contrast Variation Methods to Core-Shell Latex Structures... [Pg.413]

The latex structure, constituting the juxtaposed secondary particles, is assumed as hexagonal-compact. Consequently, every particle is surrounded by twelve neighboring particles (or voids). This assumption conditions the pores formation. [Pg.1118]

Abbreviations-. EPDM, ethylene-propylene-diene monomer (a copolymer elastomer) CTBN, carboxy-terminated butadiene nitrile (an elastomer prepolymer) ABS, acrylonitrile-butadiene-styrene (a complex latex structure used both independently and to toughen other polymers) SBR, styrene-butadiene rubber (an elastomer). [Pg.692]

Kose A and Flachisu S 1976 Ordered structure in weakly flocculated monodisperse latex J. Colloid Interface Sol. 55 487-98... [Pg.2694]

Layered Structures. Whenever a barrier polymer lacks the necessary mechanical properties for an appHcation or the barrier would be adequate with only a small amount of the more expensive barrier polymer, a multilayer stmcture via coextmsion or lamination is appropriate. Whenever the barrier polymer is difficult to melt process or a particular traditional substrate such as paper or cellophane [9005-81-6] is necessary, a coating either from latex or a solvent is appropriate. A layered stmcture uses the barrier polymer most efficiently since permeation must occur through the barrier polymer and not around the barrier polymer. No short cuts are allowed for a permeant. The barrier properties of these stmctures are described by the permeance which is described in equation 16 where and L are the permeabiUties and thicknesses of the layers. [Pg.495]

Phosphoric Acid Fuel Cell This type of fuel cell was developed in response to the industiy s desire to expand the natural-gas market. The electrolyte is 93 to 98 percent phosphoric acid contained in a matrix of silicon carbide. The electrodes consist of finely divided platinum or platinum alloys supported on carbon black and bonded with PTFE latex. The latter provides enough hydrophobicity to the electrodes to prevent flooding of the structure by the electrolyte. The carbon support of the air elec trode is specially formulated for oxidation resistance at 473 K (392°F) in air and positive potentials. [Pg.2412]

Applicability Most hazardous waste slurried in water can be mixed directly with cement, and the suspended solids will be incorporated into the rigid matrices of the hardened concrete. This process is especially effective for waste with high levels of toxic metals since at the pH of the cement mixture, most multivalent cations are converted into insoluble hydroxides or carbonates. Metal ions also may be incorporated into the crystalline structure of the cement minerals that form. Materials in the waste (such as sulfides, asbestos, latex and solid plastic wastes) may actually increase the strength and stability of the waste concrete. It is also effective for high-volume, low-toxic, radioactive wastes. [Pg.180]

From the electron micrographs, assuming that PVAc particles in the latex are the same size, the formation model of the porous film from the latex film can be illustrated as in Fig. 3 [19]. When the latex forms a dried film over minimum film-forming temperature, it is concluded that PVA coexisted in the latex and is not excluded to the outside of the film during filming, but is kept in spaces produced by the close-packed structure of PVAc particles. [Pg.172]

The progression of an ideal emulsion polymerization is considered in three different intervals after forming primary radicals and low-molecular weight oligomers within the water phase. In the first stage (Interval I), the polymerization progresses within the micelle structure. The oligomeric radicals react with the individual monomer molecules within the micelles to form short polymer chains with an ion radical on one end. This leads to the formation of a new phase (i.e., polymer latex particles swollen with the monomer) in the polymerization medium. [Pg.190]

The function of emulsifier in the emulsion polymerization process may be summarized as follows [45] (1) the insolubilized part of the monomer is dispersed and stabilized within the water phase in the form of fine droplets, (2) a part of monomer is taken into the micel structure by solubilization, (3) the forming latex particles are protected from the coagulation by the adsorption of monomer onto the surface of the particles, (4) the emulsifier makes it easier the solubilize the oligomeric chains within the micelles, (5) the emulsifier catalyzes the initiation reaction, and (6) it may act as a transfer agent or retarder leading to chemical binding of emulsifier molecules to the polymer. [Pg.196]

The dispersion polymerization of alkylcyanoacry-lates provides degradable uniform polyalkylcyanoacry-late latex particles in submicron size range. These particles are termed as biodegradable nanoparticles in the common literature [102-107]. The general structure of alkylcyanoacrylates is ... [Pg.210]

Originally from China, Rhus vernicefera has been under cultivation in Japan since the sixth century AD. The latex is collected in the same way as the rubber plant Hevea brasiliensis. The product is known as urushiol, which consists mostly of dihydric phenols of structures (Fig. 6) and is used as lacquers. [Pg.420]

Lapworth, Arthur, 707 Lard, composition of, 1062 Latex, rubber from, 245 vulcanization of, 245-246 Laurene, synthesis of, 875 Laurie acid, structure of, 1062 LDS0, 25 table of, 26... [Pg.1303]

The mechanism of B polymerization is summarized in Scheme 4,9. 1,2-, and cis- and trews-1,4-butadiene units may be discriminated by IR, Raman, or H or nC MMR speclroseopy.1 92 94 PB comprises predominantly 1,4-rra//.v-units. A typical composition formed by radical polymerization is 57.3 23.7 19.0 for trans-1,4- c7a -1,4- 1,2-. While the ratio of 1,2- to 1,4-units shows only a small temperature dependence, the effect on the cis-trans ratio appears substantial. Sato et al9J have determined dyad sequences by solution, 3C NMR and found that the distribution of isomeric structures and tacticity is adequately described by Bernoullian statistics. Kawahara et al.94 determined the microslructure (ratio // measurements directly on PB latexes and obtained similar data to that obtained by solution I3C NMR. They94 also characterized crosslinked PB. [Pg.184]

Another largely unexplored area is the change of dynamics due to the influence of the surface. The dynamic behavior of a latex suspension as a model system for Brownian particles is determined by photon correlation spectroscopy in evanescent wave geometry [130] and reported to differ strongly from the bulk. Little information is available on surface motion and relaxation phenomena of polymers [10, 131]. The softening at the surface of polymer thin films is measured by a mechanical nano-indentation technique [132], where the applied force and the path during the penetration of a thin needle into the surface is carefully determined. Thus the structure, conformation and dynamics of polymer molecules at the free surface is still very much unexplored and only few specific examples have been reported in the literature. [Pg.384]

Emulsion polymerization is the most important process for production of elastic polymers based on butadiene. Copolymers of butadiene with styrene and acrylonitrile have attained particular significance. Polymerized 2-chlorobutadiene is known as chloroprene rubber. Emulsion polymerization provides the advantage of running a low viscosity during the entire time of polymerization. Hence the temperature can easily be controlled. The polymerizate is formed as a latex similar to natural rubber latex. In this way the production of mixed lattices is relieved. The temperature of polymerization is usually 50°C. Low-temperature polymerization is carried out by the help of redox systems at a temperature of 5°C. This kind of polymerization leads to a higher amount of desired trans-1,4 structures instead of cis-1,4 structures. Chloroprene rubber from poly-2-chlorbutadiene is equally formed by emulsion polymerization. Chloroprene polymerizes considerably more rapidly than butadiene and isoprene. Especially in low-temperature polymerization emulsifiers must show good solubility and... [Pg.602]

Reactor design can have a significant influence on reactor performance in a number of ways. Some aspects of reactor design such as heat transfer, structural design, etc., are reasonably well-understood. Other phenomena such as mixing details, latex flocculation, and the formation wall polymer are not completely understood. [Pg.11]

This paper presents the physical mechanism and the structure of a comprehensive dynamic Emulsion Polymerization Model (EPM). EPM combines the theory of coagulative nucleation of homogeneously nucleated precursors with detailed species material and energy balances to calculate the time evolution of the concentration, size, and colloidal characteristics of latex particles, the monomer conversions, the copolymer composition, and molecular weight in an emulsion system. The capabilities of EPM are demonstrated by comparisons of its predictions with experimental data from the literature covering styrene and styrene/methyl methacrylate polymerizations. EPM can successfully simulate continuous and batch reactors over a wide range of initiator and added surfactant concentrations. [Pg.360]

In the same year, Fulda and Tieke [75] reported on Langmuir films of monodisperse, 0.5-pm spherical polymer particles with hydrophobic polystyrene cores and hydrophilic shells containing polyacrylic acid or polyacrylamide. Measurement of ir-A curves and scanning electron microscopy (SEM) were used to determine the structure of the monolayers. In subsequent work, Fulda et al. [76] studied a variety of particles with different hydrophilic shells for their ability to form Langmuir films. Fulda and Tieke [77] investigated the influence of subphase conditions (pH, ionic strength) on monolayer formation of cationic and anionic particles as well as the structure of films made from bidisperse mixtures of anionic latex particles. [Pg.217]

In 1997, a Chinese research group [78] used the colloidal solution of 70-nm-sized carboxylated latex particles as a subphase and spread mixtures of cationic and other surfactants at the air-solution interface. If the pH was sufficiently low (1.5-3.0), the electrostatic interaction between the polar headgroups of the monolayer and the surface groups of the latex particles was strong enough to attract the latex to the surface. A fairly densely packed array of particles could be obtained if a 2 1 mixture of octadecylamine and stearic acid was spread at the interface. The particle films could be transferred onto solid substrates using the LB technique. The structure was studied using transmission electron microscopy. [Pg.217]

Fulda and Tieke [77] studied the effect of a bidisperse-size distribution of latex particles on the structure of the resulting LB monolayer. For this purpose, a mixed colloidal solution of particles la and lb was spread at the air-water interface. Particles la had a diameter of 434 nm, particles lb of 214 nm. The monolayer was compressed, transferred onto a solid substrate, and viewed in a scanning electron microscope (SEM). In Figure 10, SEM pictures of LB layers obtained from various bidisperse mixtures are shown. [Pg.224]

Fulda and coworkers [92,93], Bliznyuk and Tsukruk [94], and Serizawa and coworkers [95-97] were the first who tried to use this technique for the preparation of ordered bi- and multilayer assemblies of oppositely charged latex particles. The structure was investigated using scanning force microscopy (SFM) and SEM. In a further publication, Kampes and Tieke [98] studied the influence of the preparation conditions on the state of order of the monolayers. In the following section, the recent studies are more extensively reviewed. [Pg.229]

Hollow and porous polymer capsules of micrometer size have been fabricated by using emulsion polymerization or through interfacial polymerization strategies [79,83-84, 88-90], Micron-size, hollow cross-linked polymer capsules were prepared by suspension polymerization of emulsion droplets with polystyrene dissolved in an aqueous solution of poly(vinyl alcohol) [88], while latex capsules with a multihollow structure were processed by seeded emulsion polymerization [89], Ceramic hollow capsules have also been prepared by emulsion/phase-separation procedures [14,91-96] For example, hollow silica capsules with diameters of 1-100 micrometers were obtained by interfacial reactions conducted in oil/water emulsions [91],... [Pg.515]


See other pages where Latex structure is mentioned: [Pg.175]    [Pg.233]    [Pg.300]    [Pg.56]    [Pg.175]    [Pg.233]    [Pg.300]    [Pg.56]    [Pg.2411]    [Pg.799]    [Pg.406]    [Pg.595]    [Pg.671]    [Pg.170]    [Pg.173]    [Pg.190]    [Pg.191]    [Pg.197]    [Pg.579]    [Pg.579]    [Pg.104]    [Pg.339]    [Pg.198]    [Pg.213]    [Pg.214]    [Pg.229]    [Pg.230]    [Pg.238]    [Pg.440]   
See also in sourсe #XX -- [ Pg.499 ]




SEARCH



Lateral structure latex

Latex dispersions structure

Polymer latex chemical structure

Pore structure of latex-modified

Structure of Latex Particles

Structured latex films

Structured latex particles

Two Stage Preparation for Structured Latexes

© 2024 chempedia.info