Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Other Phenomena

The need for solvation in anionic polymerization manifests itself in some instances by other deviations from the normal reaction rate expressions. Thus the butyllithium polymerization of methyl methacrylate in toluene at — 60°C shows a second-order dependence of Rp on monomer concentration [L Abbe and Smets, 1967]. In the nonpolar toulene, monomer is involved in solvating the propagating species [Busson and Van Beylen, 1978]. When polymerization is carried out in the mixed solvent dioxane-toluene (a more polar solvent than toluene), the normal first-order dependence of Rp on [M] is observed. The lithium diethylamide, LiN(C2H5)2, polymerization of styrene at 25°C in THF-benzene similarly shows an increased order of dependence of Rp on [M] as the amount of tetrahydrofuran is decreased [Hurley and Tait, 1976]. [Pg.435]

Propagation of two-ended (bifunctional) propagating species often proceeds at a rate lower than that of the corresponding monoanion species as a result of triple-ion formation [Bhattacharyya et al., 1964 Smid, 2002]. For example, ionic dissociation of the counterion from one end of the cesium salt of a two-ended propagating species XXX yields XXXI in which the newly dissociated anionic center remains near the ion pair at the other end of [Pg.435]

The result is XXXII, referred to as a triple ion. The triple ion propagates faster than a simple ion pair hut slower than a free ion [Muller, 1989]. The major effect of triple ion formation is a lowering of the concentration of free ions and the overall result is a decrease [Pg.436]

The higher reactivity of 2-vinylpyridine relative to styrene has been attributed to a combination of intramolecular solvation and triple-ion formation [Sigwalt, 1975 Soum et al., 1977]. [Pg.436]

Anionic and cationic living polymerizations offer routes to block copolymers, star polymers, telechelic polymers, and other polymers [Charleux and Faust, 1999 Hadjichristidis et al., 2002], [Pg.436]


A major difficulty in an inorganic text is to strike a balance between a short readable book and a longer, more detailed text which can be used for reference purposes. In reaching what we hope is a reasonable compromise between these two extremes, we acknowledge that both the historical background and industrial processes have been treated very concisely. We must also say that we have not hesitated to simplify complicated reactions or other phenomena—thus, for example, the treatment of amphoterism as a pH-dependent sequence between a simple aquo-cation and a simple hydroxo-anion neglects the presence of more complicated species but enables the phenomena to be adequately understood at this level. [Pg.458]

A is a parameter that can be varied to give the correct amount of ionic character. Another way to view the valence bond picture is that the incorporation of ionic character corrects the overemphasis that the valence bond treatment places on electron correlation. The molecular orbital wavefimction underestimates electron correlation and requires methods such as configuration interaction to correct for it. Although the presence of ionic structures in species such as H2 appears coimterintuitive to many chemists, such species are widely used to explain certain other phenomena such as the ortho/para or meta directing properties of substituted benzene compounds imder electrophilic attack. Moverover, it has been shown that the ionic structures correspond to the deformation of the atomic orbitals when daey are involved in chemical bonds. [Pg.145]

When plastic deformation occurs, crystallographic planes sHp past each other. SHp is fackitated by the unique atomic stmcture of metals, which consists of an electron cloud surrounding positive nuclei. This stmcture permits shifting of atomic position without separation of atomic planes and resultant fracture. The stress requked to sHp an atomic plane past an adjacent plane is extremely high if the entire plane moves at the same time. Therefore, the plane moves locally, which gives rise to line defects called dislocations. These dislocations explain strain hardening and many other phenomena. [Pg.230]

A variety of other phenomena influence fractional solidification of organic compounds (68). [Pg.450]

Each of these and other phenomena could, by themselves, benefit from in-depth examination. This article focuses primarily on those computing technologies that find appHcation in computational domains, especially within computational chemistry. [Pg.87]

Each reactant and product appears in the Nemst equation raised to its stoichiometric power. Thermodynamic data for cell potentials have been compiled and graphed (3) as a function of pH. Such graphs are known as Pourbaix diagrams, and are valuable for the study of corrosion, electro deposition, and other phenomena in aqueous solutions.Erom the above thermodynamic analysis, the cell potential can be related to the Gibbs energy change... [Pg.63]

The complexity of the typical solid deformation response can be further compounded by the presence of one or more polymorphic phase transformations, and a host of other phenomena typical of solids. Table 1.1 lists a number of such phenomena. [Pg.5]

Our immediate and instinctive reaction to an impact or explosion leaves a mental image of utter chaos and destruction. There may be a fascination with the power of such events, but our limited time resolution and limited pressure-sensing abilities cannot provide direct information on the underlying orderly mechanical, physical, and chemical processes. As with other phenomena not subject to direct examination by our human senses, the scientific descriptions of shock and explosion phenomena rest upon a collection of images of the processes which are derived from a range of experiences. The three principal sources of these images in shock science—experiment, theory, and numerical simulation—are indicated in the cartoon of Fig. 3.1. [Pg.53]

Reaction overpotential. Both overpotentials mentioned above are normally of higher importance than the reaction overpotential. It may happen sometimes, however, that other phenomena, which occur in the electrolyte or during electrode processes, such as adsorption and desorption, are the speed-limiting factors. Crystallization overpotential. This exists as a result of the inhibited intercalation of metal ions into their lattice. This process is of fundamental importance when secondary batteries are charged, especially during metal deposition on the negative side. [Pg.15]

It is now well established that in lithium batteries (including lithium-ion batteries) containing either liquid or polymer electrolytes, the anode is always covered by a passivating layer called the SEI. However, the chemical and electrochemical formation reactions and properties of this layer are as yet not well understood. In this section we discuss the electrode surface and SEI characterizations, film formation reactions (chemical and electrochemical), and other phenomena taking place at the lithium or lithium-alloy anode, and at the Li. C6 anode/electrolyte interface in both liquid and polymer-electrolyte batteries. We focus on the lithium anode but the theoretical considerations are common to all alkali-metal anodes. We address also the initial electrochemical formation steps of the SEI, the role of the solvated-electron rate constant in the selection of SEI-building materials (precursors), and the correlation between SEI properties and battery quality and performance. [Pg.420]

The transfer of PCSs from solutions into the solid state may be accompanied by the origination of hydrogen and salt bonds, by associations in crystalline regions, or by charge transfer states and some other phenomena. These effects are followed by some conformational transformations in the macromolecules. The solution of the problem of the influence of these phenomena on the conjugation efficiency and on the complex of properties of the polymer is of fundamental importance. [Pg.19]

The effect of local activation accounts for such features of PCSs as catalytic and stabilizing properties, autocatalysis, specific properties of thermal degradation, structural modification, and a number of other phenomena typical of polymers with a system of conjugated bonds. [Pg.37]

Other phenomena attributed to a bootstrap or similar effects include... [Pg.431]

Considering the similarity between Figs. 1 and 2, the electrode potential E and the anodic dissolution current J in Fig. 2 correspond to the control parameter ft and the physical variable x in Fig. 1, respectively. Then it can be said that the equilibrium solution of J changes the value from J - 0 to J > 0 at the critical pitting potential pit. Therefore the critical pitting potential corresponds to the bifurcation point. From these points of view, corrosion should be classified as one of the nonequilibrium and nonlinear phenomena in complex systems, similar to other phenomena such as chaos. [Pg.221]

Lelea D, Nishio S, Takano K (2004) The experimental research on micro-tube heat transfer and fluid flow of distilled water. Int J Heat Mass Transfer 47 2817-2830 Li ZX, Du DX, Guo ZY (2003) Experimental study on flow characteristics of liquid in circular micro-tubes. Microscale Thermophys Eng 7 253-265 Lindgren ER (1958) The transition process and other phenomena in viscous flow. Arkiv fur Physik 12 1-169... [Pg.141]

Reactor design can have a significant influence on reactor performance in a number of ways. Some aspects of reactor design such as heat transfer, structural design, etc., are reasonably well-understood. Other phenomena such as mixing details, latex flocculation, and the formation wall polymer are not completely understood. [Pg.11]

The surface of a material exposed to the environment experiences wear, corrosion, radiation, electrical, or magnetic fields and other phenomena. It must have the properties needed to withstand the environment or to provide certain desirable properties, such as reflectivity, semiconductivity, high thermal conductivity, or erosion resistance. Depositing a coating on a substrate produces a composite material and, as such, allows it to have surface property, which can be entirely different from those of the bulk material. [Pg.109]

Even though upward motion causes cooling of a parcel of air, the condensation of water vapor can maintain the temperature of a parcel of air above that of the surrounding air. When this happens, the parcel is buoyant and may accelerate further upwards. Indeed, this is an unstable situation which can result in violent updrafts at velocities of meters per second. Cumulus clouds are produced in this fashion, with other phenomena such as lightning, heavy precipitation and locally strong horizontal winds below the cloud (which provide the air needed to support the vertical motion). [Pg.137]

The subject index provides access to the text by way of methods, techniques, reaction types, apparatus, effects and other phenomena. Also, it lists compound classes such as organotin compounds or rare-earth hydrides which cannot be expressed by the empirical formulas of the compound index. [Pg.19]

The molecular process termed permeation is the most fundamental physical means by which fluid can pass right through an elastomer or other polymer. Absorption and permeation, besides being interrelated, both depend on two other phenomena associated with fluid-polymer interactions, as follows ... [Pg.634]

This paper surveys several aspects of metal-to-metal charge-transfer transitions. Species of interest originate from non-molecular and molecular solids and from solutions. The parallel in the different approaches is stressed. In addition to the spectroscopy of these transitions, their influence or role in other phenomena is also discussed. [Pg.153]

The harmonic oscillator is an important system in the study of physical phenomena in both classical and quantum mechanics. Classically, the harmonic oscillator describes the mechanical behavior of a spring and, by analogy, other phenomena such as the oscillations of charge flow in an electric circuit, the vibrations of sound-wave and light-wave generators, and oscillatory chemical reactions. The quantum-mechanical treatment of the harmonic oscillator may be applied to the vibrations of molecular bonds and has many other applications in quantum physics and held theory. [Pg.106]


See other pages where Other Phenomena is mentioned: [Pg.107]    [Pg.9]    [Pg.392]    [Pg.336]    [Pg.19]    [Pg.451]    [Pg.538]    [Pg.435]    [Pg.224]    [Pg.621]    [Pg.1221]    [Pg.209]    [Pg.24]    [Pg.927]    [Pg.489]    [Pg.783]    [Pg.23]    [Pg.518]    [Pg.626]    [Pg.646]    [Pg.7]    [Pg.143]    [Pg.74]    [Pg.169]    [Pg.226]    [Pg.153]    [Pg.180]    [Pg.2]   


SEARCH



Electrophoresis and Other Electrokinetic Phenomena

Other Absorption Phenomena

Other Interfacial Phenomena Involving Dispersed Phase Formation

Other Phenomena Influenced by Marangoni Flow

Other Regulatory Phenomena

Other Time-Dependent Phenomena

Other metastable phenomena

Other related phenomena

Surface phenomena and drug action. Diuretics. Cardiac glycosides. Other ionophoric effects

© 2024 chempedia.info