Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Laser techniques thin film preparation

Epitaxial crystal growth methods such as molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD) have advanced to the point that active regions of essentially arbitrary thicknesses can be prepared (see Thin films, film deposition techniques). Most semiconductors used for lasers are cubic crystals where the lattice constant, the dimension of the cube, is equal to two atomic plane distances. When the thickness of this layer is reduced to dimensions on the order of 0.01 )J.m, between 20 and 30 atomic plane distances, quantum mechanics is needed for an accurate description of the confined carrier energies (11). Such layers are called quantum wells and the lasers containing such layers in their active regions are known as quantum well lasers (12). [Pg.129]

Schubert J, Schdning MJ, Schmidt C, Siegert M, Mesters St, Zander W, Kordos P, Liith H, Legin A, Mourzina YG, Seleznev B, Vlasov YG (1999) Chalcogenide-based thin film sensors prepared by pulsed laser deposition technique. Appl Phys A Mater Sci Process 69 803-805... [Pg.348]

Another thin film technology based nanoparticle preparation route is gas condensation, in which metal vapor is cooled to high levels of supersaturation in an inert gas ambient [126-128]. In these experiments particles necessarily nucleate in the gas phase. In a promising extension of this technique a pulsed laser beam replaces the conventionally used thermal metal vapor source [120,121,129-134]. [Pg.90]

The titanosilicate version of UTD-1 has been shown to be an effective catalyst for the oxidation of alkanes, alkenes, and alcohols (77-79) by using peroxides as the oxidant. The large pores of Ti-UTD-1 readily accommodate large molecules such as 2,6-di-ferf-butylphenol (2,6-DTBP). The bulky 2,6-DTBP substrate can be converted to the corresponding quinone with activity and selectivity comparable to the mesoporous catalysts Ti-MCM-41 and Ti-HMS (80), where HMS = hexagonal mesoporous silica. Both Ti-UTD-1 and UTD-1 have also been prepared as oriented thin films via a laser ablation technique (81-85). Continuous UTD-1 membranes with the channels oriented normal to the substrate surface have been employed in a catalytic oxidation-separation process (82). At room temperature, a cyclohexene-ferf-butylhydroperoxide was passed through the membrane and epoxidation products were trapped on the down stream side. The UTD-1 membranes supported on metal frits have also been evaluated for the separation of linear paraffins and aromatics (83). In a model separation of n-hexane and toluene, enhanced permeation of the linear alkane was observed. Oriented UTD-1 films have also been evenly coated on small 3D objects such as glass and metal beads (84, 85). [Pg.234]

The pulsed laser deposition (PLD) technique is widely used for inorganic materials but is beconting increasingly employed for the preparation of thin films of polymers... [Pg.133]

M. Schoning, Y.G. Mourzina, J. Schubert, W. Zander, A. Legin, Y.G. Vlasov and H. Luth, Pulsed laser deposition—an innovative technique for preparing inorganic thin films, Electroanalysis, 13(8-9) (2001) 727-732. [Pg.1011]

The preparation of c-axis aligned or even epitaxial RNi2B2C thin films has been performed using both, pulsed laser deposition (PLD Cimberle et al., 1997 Hase et al., 1997) and magnetron sputtering technique (Arisawa et al., 1994 Andreone... [Pg.207]

ZnO thin films can be prepared by a variety of techniques such as magnetron sputtering, chemical vapor deposition, pulsed-laser deposition, molecular beam epitaxy, spray-pyrolysis, and (electro-)chemical deposition [24,74]. In this book, sputtering (Chap. 5), chemical vapor deposition (Chap. 6), and pulsed-laser deposition (Chap. 7) are described in detail, since these methods lead to the best ZnO films concerning high conductivity and transparency. The first two methods allow also large area depositions making them the industrially most advanced deposition techniques for ZnO. ZnO films easily crystallize, which is different for instance compared with ITO films that can... [Pg.10]

In order to learn about the true quantum efficiency of photogeneration one therefore has to study the photoinduced charge generation mechanism at faster time scales. Pump probe spectroscopy utilising a few optical-cycle laser pulses (5-6 fs) in the visible spectral range with broadband frequency conversion techniques [89] now makes it possible to study extremely fast optically-initiated events with unprecedented time resolution. Such a setup was used to time-resolve the kinetics of the charge transfer process from a polymer chain to a fullerene moiety in thin films of poly[2-methoxy, 5-(3, 7 -dimethyl-octyloxy)]-p-phenylene vinylene (MDMO-PPV) and [6,6]-phenyl C6i butyric acid methyl ester (PCBM). Solutions prepared from 1 wt% solutions of toluene on thin quartz substrates were studied. [Pg.21]

Another frequently employed and convenient way for the preparation of Ti02 thin films is pulsed laser deposition [180], although this technique does not produce nanocrystalline structures. [Pg.11]

In general, these methods are used for the production of nanocrystalline powders which may be further compacted via techniques such as hot-pressing [157, 158] or magnetic pulsed compaction [159, 160]. In addition, other types of nanoionic material maybe prepared, such as nanometer-thin films, using techniques including molecular beam epitaxy [161], pulsed laser deposition [162] or spin-coating methods [163]. Novel structures, such as core-shell [164—166] and multi-layered [167, 168] (so-called onion structures) materials, may also be produced in this way. [Pg.96]

Biomimetic nanocrystalline apatite coatings were deposited on titanium substrates by matrix-assisted pulsed laser evaporation (MAPLE), a technique with potential application in tissue engineering (Visan et al., 2014 Caricato etal., 2014). The targets were prepared from nano-sized, poorly crystalline apatite powders, analogous in composition to mineral bone. For the deposition of thin films, a KrF excimer laser source was used (A = 248 nm,rFWHM < 25 ns). Analyses of the deposited films showed that the structural and chemical nature of the nanocrystalline precursor apatite was preserved. Hence, MAPLE may be a suitable technique for the congruent transfer of a delicate material such as nanohydroxyapatite. [Pg.220]


See other pages where Laser techniques thin film preparation is mentioned: [Pg.415]    [Pg.117]    [Pg.287]    [Pg.467]    [Pg.468]    [Pg.1223]    [Pg.543]    [Pg.206]    [Pg.392]    [Pg.347]    [Pg.611]    [Pg.485]    [Pg.255]    [Pg.160]    [Pg.517]    [Pg.219]    [Pg.2337]    [Pg.44]    [Pg.22]    [Pg.16]    [Pg.57]    [Pg.360]    [Pg.252]    [Pg.101]    [Pg.517]    [Pg.79]    [Pg.397]    [Pg.3445]    [Pg.4849]    [Pg.4850]    [Pg.4852]    [Pg.222]    [Pg.121]    [Pg.477]    [Pg.194]    [Pg.156]    [Pg.117]    [Pg.393]   
See also in sourсe #XX -- [ Pg.16 , Pg.21 ]

See also in sourсe #XX -- [ Pg.16 , Pg.21 ]




SEARCH



Film preparation

Films lasers

Laser thinning

Preparation techniques

Preparative techniques

Thin lasers

Thin preparations

Thin-film preparation

Thin-film techniques

© 2024 chempedia.info