Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mesoporous catalysts

The search for better catalysts has been facilitated in recent years by molecular modeling. We are seeing here a step change. This is the subject of Chapter 1 (Molecular Catalytic Kinetics Concepts). New types of catalysts appeared to be more selective and active than conventional ones. Tuned mesoporous catalysts, gold catalysts, and metal organic frameworks (MOFs) that are discussed in Chapter 2 (Hierarchical Porous Zeolites by Demetallation, 3 (Preparation of Nanosized Gold Catalysts and Oxidation at Room Temperature), and 4 (The Fascinating Structure... [Pg.389]

Nafion NR50 catalyst at 120°C. However, the performance of the recycled acidic mesoporous catalyst was negatively affected by the presence of polar impurities in the beef tallow. [Pg.281]

TUD-1 A Generalized Mesoporous Catalyst Family for Industrial Applieations... [Pg.367]

Table 1 summarizes the catalysts physisorption properties, the MWCNTs yields and their maximum decomposition temperatures. MCM41 produces amorphous carbon phases with higher thermal stability. Some authors have obtained CNT using only the MCM41 as a template [11, 12] but the reaction was carrying out at higher temperatures and its CNT yield was lower than the one obtained with mesoporous catalyst containing metallic incorporation as in our work. [Pg.211]

The catalyst samples were prepared in our laboratory. The synthesized Na-ZSM-5 zeolite was modified by conventional or solid state ion-exchange [11] to form H-, Fe-, Cu-, Ni- and Ti-ZSM5 samples, while the mesoporous catalysts (Fe- and Ti-MCM-41) were synthesized by isomorphous substitution [12], as well as the hydrotalcites containing Fe-, Cu-, Cr- or Ca-oxide in the Mg,Al-LDH structure [13]. [Pg.268]

Hydroisomerization of n-octane over Pt-containing micro/mesoporous catalysts obtained by recrystallization of zeolites BEA and MOR was investigated in the temperature range of 200-250 °C under 1-20 bar. Composite materials showed remarkably high activity and selectivity with respect to both pure microporous and pure mesoporous materials. The effect is due to high zeolitic acidity combined with improved accessibility of active sites and transport of bulky molecules provided by mesopores. [Pg.413]

The electron crystallography method (21) has been used to characterize three-dimensional structures of siliceous mesoporous catalyst materials, and the three-dimensional structural solutions of MCM-48 (mentioned above) and of SBA-1, -6, and -16. The method gives a unique structural solution through the Fourier sum of the three-dimensional structure factors, both amplitude and phases, obtained from Fourier analysis of a set of HRTEM images. The topological nature of the siliceous walls that define the pore structure of MCM-48 is shown in Fig. 28. [Pg.242]

The titanosilicate version of UTD-1 has been shown to be an effective catalyst for the oxidation of alkanes, alkenes, and alcohols (77-79) by using peroxides as the oxidant. The large pores of Ti-UTD-1 readily accommodate large molecules such as 2,6-di-ferf-butylphenol (2,6-DTBP). The bulky 2,6-DTBP substrate can be converted to the corresponding quinone with activity and selectivity comparable to the mesoporous catalysts Ti-MCM-41 and Ti-HMS (80), where HMS = hexagonal mesoporous silica. Both Ti-UTD-1 and UTD-1 have also been prepared as oriented thin films via a laser ablation technique (81-85). Continuous UTD-1 membranes with the channels oriented normal to the substrate surface have been employed in a catalytic oxidation-separation process (82). At room temperature, a cyclohexene-ferf-butylhydroperoxide was passed through the membrane and epoxidation products were trapped on the down stream side. The UTD-1 membranes supported on metal frits have also been evaluated for the separation of linear paraffins and aromatics (83). In a model separation of n-hexane and toluene, enhanced permeation of the linear alkane was observed. Oriented UTD-1 films have also been evenly coated on small 3D objects such as glass and metal beads (84, 85). [Pg.234]

A recent investigation has demonstrated the usefulness of ultrasonic irradiation in the preparation of delaminated zeolites, which are a particular type of modified oxides - microporous crystalline aluminosilicates with three-dimensional structures - having a greater catalytic activity than the layered structures (clays) and mesoporous catalysts. In an attempt to increase the pore size of zeolites, a layered zeolite precursor was... [Pg.123]


See other pages where Mesoporous catalysts is mentioned: [Pg.33]    [Pg.65]    [Pg.368]    [Pg.370]    [Pg.372]    [Pg.374]    [Pg.376]    [Pg.376]    [Pg.378]    [Pg.95]    [Pg.95]    [Pg.96]    [Pg.97]    [Pg.97]    [Pg.99]    [Pg.101]    [Pg.103]    [Pg.105]    [Pg.107]    [Pg.109]    [Pg.111]    [Pg.113]    [Pg.115]    [Pg.117]    [Pg.118]    [Pg.119]    [Pg.121]    [Pg.123]    [Pg.125]    [Pg.127]    [Pg.129]    [Pg.131]    [Pg.133]    [Pg.135]    [Pg.137]    [Pg.140]    [Pg.542]    [Pg.263]    [Pg.264]    [Pg.270]    [Pg.82]   
See also in sourсe #XX -- [ Pg.11 , Pg.141 , Pg.142 , Pg.144 ]

See also in sourсe #XX -- [ Pg.81 ]

See also in sourсe #XX -- [ Pg.409 , Pg.410 ]

See also in sourсe #XX -- [ Pg.269 ]




SEARCH



Bifunctional mesoporous silica catalysts

Catalyst preparation mesoporous silica

Catalysts mesoporous metal-organic frameworks

Hydrogenation, mesoporous catalyst

Mesoporous Mixed Oxide Catalysts

Mesoporous aluminosilicates as oligomerization catalysts

Mesoporous catalyst films

Mesoporous ceria catalysts

Mesoporous organic oxidation catalyst

Micro-mesoporous catalysts

Ordered mesoporous carbon-supported nano-platinum catalysts application in direct methanol fuel cells

© 2024 chempedia.info