Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Laser measurements, problems

The rapid progress in recent years in the spectroscopy of the hydrogen atom has renewed pressure for a much better optical frequency standard. This in itself would not be enough to solve the measurement problem. New techniques of comparing optical frequencies are needed. He have developed methods of modulating lasers which can be used for frequency differences in excess of 2THz. [Pg.899]

Thermometric measurements are of primary importance in the analysis and the control of combustion processes. As a matter of fact, the chemical routes, established by specific chemical reactions, depend very much on the temperature at which they take place. For this reason, the temperature is one of the most important parameters that dramatically influence the whole combustion efficiency as well as heat release and formation of the pollutants. It is then not surprising that many laser measurements, designed for diagnostic purposes, are meant to obtain an experimental evaluation of the high temperatures developed during the combustion. Various techniques can offer a solution to the problem. The most known are Rayleigh, LIP, SpRS, and CARS. They are compared in the following Table 12.2. [Pg.281]

In the next section of this paper, we will focus in more detail on the Implementation of CARS for combustion diagnostics and highlight some of the laser physics problem areas where further improvements would be desirable. Subsequent to that, the status of current spectroscopic research areas in high pressure modelling and electronic resonance CARS will be described. The paper will conclude with some Illustrative field applications including a description of a compact, mobile CARS Instrument designed for practical combustion measurements. [Pg.224]

Limits of detection become a problem in capillary electrophoresis because the amounts of analyte that can be loaded into a capillary are extremely small. In a 20 p.m capillary, for example, there is 0.03 P-L/cm capillary length. This is 1/100 to 1/1000 of the volume typically loaded onto polyacrylamide or agarose gels. For trace analysis, a very small number of molecules may actually exist in the capillary after loading. To detect these small amounts of components, some on-line detectors have been developed which use conductivity, laser Doppler effects, or narrowly focused lasers (qv) to detect either absorbance or duorescence (47,48). The conductivity detector claims detection limits down to lO molecules. The laser absorbance detector has been used to measure some of the components in a single human cell (see Trace AND RESIDUE ANALYSIS). [Pg.183]

Surface analysis by non-resonant (NR-) laser-SNMS [3.102-3.106] has been used to improve ionization efficiency while retaining the advantages of probing the neutral component. In NR-laser-SNMS, an intense laser beam is used to ionize, non-selec-tively, all atoms and molecules within the volume intersected by the laser beam (Eig. 3.40b). With sufficient laser power density it is possible to saturate the ionization process. Eor NR-laser-SNMS adequate power densities are typically achieved in a small volume only at the focus of the laser beam. This limits sensitivity and leads to problems with quantification, because of the differences between the effective ionization volumes of different elements. The non-resonant post-ionization technique provides rapid, multi-element, and molecular survey measurements with significantly improved ionization efficiency over SIMS, although it still suffers from isoba-ric interferences. [Pg.132]

There are different techniques to evaluate the quantitative stress level in prototype and production products. They can predict potential problems. Included is the use of electrical resistance strain gauges bonded on the surface of the product. This popular method identifies external and internal stresses. Their various configurations are made to identify stresses in different directions. This technique has been extensively used for over a half century on very small to very large products such as toys to airplanes. There is the optical strain measurement system that is based on the principles of optical interference. It uses Moire, laser, or holographic interferometry (2,3,20). [Pg.302]

How can such problems be counterbalanced Since a large capacitance of a semiconductor/electrolyte junction will not negatively affect the PMC transient measurement, a large area electrode (nanostructured materials) should be selected to decrease the effective excess charge carrier concentration (excess carriers per surface area) in the interface. PMC transient measurements have been performed at a sensitized nanostructured Ti02 liquidjunction solar cell.40 With a 10-ns laser pulse excitation, only the slow decay processes can be studied. The very fast rise time cannot be resolved, but this should be the aim of picosecond studies. Such experiments are being prepared in our laboratory, but using nanostructured... [Pg.505]

Which lasers . The above mentioned accuracy of the tilt measurements can be achieve if there are enough return photons. The average laser power required to get them is 2 x 20 W. Up to now, there is no cw laser available that powerful (see Ch. 14). In addition it raised the problem of saturation of the absorption by Na atoms in the D2 transition. These two problems have justified the development of the modeless laser (LSM) at LSP (Pique and Farinotti, 2003). [Pg.268]

The last problem of this series concerns femtosecond laser ablation from gold nanoparticles [87]. In this process, solid material transforms into a volatile phase initiated by rapid deposition of energy. This ablation is nonthermal in nature. Material ejection is induced by the enhancement of the electric field close to the curved nanoparticle surface. This ablation is achievable for laser excitation powers far below the onset of general catastrophic material deterioration, such as plasma formation or laser-induced explosive boiling. Anisotropy in the ablation pattern was observed. It coincides with a reduction of the surface barrier from water vaporization and particle melting. This effect limits any high-power manipulation of nanostructured surfaces such as surface-enhanced Raman measurements or plasmonics with femtosecond pulses. [Pg.282]

In AFS, the analyte is introduced into an atomiser (flame, plasma, glow discharge, furnace) and excited by monochromatic radiation emitted by a primary source. The latter can be a continuous source (xenon lamp) or a line source (HCL, EDL, or tuned laser). Subsequently, the fluorescence radiation is measured. In the past, AFS has been used for elemental analysis. It has better sensitivity than many atomic absorption techniques, and offers a substantially longer linear range. However, despite these advantages, it has not gained the widespread usage of atomic absorption or emission techniques. The problem in AFS has been to obtain a... [Pg.624]

Raman spectroscopy has enjoyed a dramatic improvement during the last few years the interference by fluorescence of impurities is virtually eliminated. Up-to-date near-infrared Raman spectrometers now meet most demands for a modern analytical instrument concerning applicability, analytical information and convenience. In spite of its potential abilities, Raman spectroscopy has until recently not been extensively used for real-life polymer/additive-related problem solving, but does hold promise. Resonance Raman spectroscopy exhibits very high selectivity. Further improvements in spectropho-tometric measurement detection limits are also closely related to advances in laser technology. Apart from Raman spectroscopy, areas in which the laser is proving indispensable include molecular and fluorescence spectroscopy. The major use of lasers in analytical atomic... [Pg.734]

The density here refers to the spatial coordinate, i.e. the concentration of the reaction product, and is not to be confused with the D(vx,vy,vz) in previous sections which refers to the center-of-mass velocity space. Laser spectroscopic detection methods in general measure the number of product particles within the detection volume rather than a flux, which is proportional to the reaction rate, emerging from it. Thus, products recoiling at low laboratory velocities will be detected more efficiently than those with higher velocities. The correction for this laboratory velocity-dependent detection efficiency is called a density-to-flux transformation.40 It is a 3D space- and time-resolved problem and is usually treated by a Monte Carlo simulation.41,42... [Pg.13]

Fig. 8. Scattering the transition state from the surface. Measured vibrational distribution of NO resulting from scattering of laser-prepared NO(v = 15) from Au (111) at incidence = 5 kJ mol-1. Only a small fraction of the laser-prepared population of v = 15 remains in the initial vibrational state. The most probable scattered vibrational level is more than 150 kJ mol-1 lower in energy than the initial state. Vibrational states below v = 5 could not be detected due to background problems. These experiments provide direct evidence that the remarkable coupling of vibrational motion to metallic electrons postulated by Luntz et al. can in fact occur. (See Refs. 44 and 59.)... Fig. 8. Scattering the transition state from the surface. Measured vibrational distribution of NO resulting from scattering of laser-prepared NO(v = 15) from Au (111) at incidence = 5 kJ mol-1. Only a small fraction of the laser-prepared population of v = 15 remains in the initial vibrational state. The most probable scattered vibrational level is more than 150 kJ mol-1 lower in energy than the initial state. Vibrational states below v = 5 could not be detected due to background problems. These experiments provide direct evidence that the remarkable coupling of vibrational motion to metallic electrons postulated by Luntz et al. can in fact occur. (See Refs. 44 and 59.)...

See other pages where Laser measurements, problems is mentioned: [Pg.3]    [Pg.902]    [Pg.351]    [Pg.17]    [Pg.415]    [Pg.1065]    [Pg.887]    [Pg.915]    [Pg.1173]    [Pg.1973]    [Pg.2955]    [Pg.2956]    [Pg.14]    [Pg.334]    [Pg.1877]    [Pg.696]    [Pg.134]    [Pg.369]    [Pg.509]    [Pg.242]    [Pg.256]    [Pg.236]    [Pg.190]    [Pg.273]    [Pg.207]    [Pg.341]    [Pg.239]    [Pg.169]    [Pg.239]    [Pg.260]    [Pg.280]    [Pg.347]    [Pg.2]    [Pg.13]    [Pg.98]    [Pg.126]    [Pg.164]    [Pg.302]   
See also in sourсe #XX -- [ Pg.131 ]




SEARCH



Measurement problem

© 2024 chempedia.info