Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Laser mass spectroscopy

Individual and non-destructive chemical analysis of microscopic remnants enclosed in mineral grains has been proven possible by certain spectroscopic techniques such as Raman-, IR-, UV/visible- and Laser mass spectroscopy (Pflug, 1982)16>. [Pg.7]

Molecular weight determination of PEG and PPG by laser mass spectroscopy [98]. [Pg.178]

LCMS liquid chromatography mass spectros- LMS laser mass spectroscopy... [Pg.600]

Vonderlinde, D., Danielzik, B. (1989) Picosecond Time-resolved Laser Mass Spectroscopy. IEEE J. Quantum Electron. 25 2540-2549. [Pg.264]

Mass spectroscopy has been reviewed, particularly its application to volatiles [1,2] and non-volatiles [3], fast atom bombardment techniques [4] (Section 2.6), secondary ion mass spectroscopic techniques (SIMS) [5] (Section 2.1), electrospray ionisation (ESI) - mass spectroscopy (Section 2.3) [6] and laser mass spectroscopy techniques (Section 2.2) [7]. [Pg.29]

Thermal electrocyclizations of perhalogenated 1,3-butadienes yield perhalogenated cyclobutenes which can be solvolysed to 3,4-dihydroxy-3-cydobutene-l,2-dione ( squaric acid") and its derivatives (G. Maahs, 1966 H. Knorr, 1978 A.H. Schmidt, 1978). Double CO extrusion from fused cyclobutenediones has been used to produce cycloalkynes, e.g., benzyne from benzocyclobutenedione by irradiation in an argon matrix (O.L. Chapman, 1973) and cyc/o-Ci8, cyclo-Cn, etc. by laser desorption mass spectroscopy of appropriate precursors (see section 4.9.8). [Pg.78]

These models are designed to define the complex entrance effects and convection phenomena that occur in a reactor and solve the complete equations of heat, mass balance, and momentum. They can be used to optimize the design parameters of a CVD reactor such as susceptor geometry, tilt angle, flow rates, and others. To obtain a complete and thorough analysis, these models should be complemented with experimental observations, such as the flow patterns mentioned above and in situ diagnostic, such as laser Raman spectroscopy. [Pg.55]

Mass spectroscopy is a useful technique for the characterization of dendrimers because it can be used to determine relative molar mass. Also, from the fragmentation pattern, the details of the monomer assembly in the branches can be confirmed. A variety of mass spectroscopic techniques have been used for this, including electron impact, fast atom bombardment and matrix-assisted laser desorption ionization (MALDI) mass spectroscopy. [Pg.138]

The anion 19 has been generated by high-energy collision of the p-pentazoylphenolate anion with an inert gas [109] and by laser desorption ionization time-of-flight mass spectroscopy of sohd p-dimethylaminophenylpentazole [110]. N AsP, NjSbF, and [Nj]jSnF have been used by Gordon, Christe et al. [Ill] in their attanpt to observe N F. [Pg.307]

The brief history, operation principle, and applications of the above-mentioned techniques are described in this chapter. There are several other measuring techniques, such as the fluorometry technique. Scanning Acoustic Microscopy, Laser Doppler Vibrometer, and Time-of-flight Secondary Ion Mass Spectroscopy, which are successfully applied in micro/nanotribology, are introduced in this chapter, too. [Pg.7]

Considering these situations, the observation of molecular weights, particularly by matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MASS), is essential [33]. The operation is simple and enables us to observe the molecular ion peaks of CPOs with molecular weights exceeding 10,000. The quahty of the measurement is strongly dependent on the choice of the matrix. Therefore, the search for the best matrix for each CPO should be pursued. [Pg.80]

We use laser photofragment spectroscopy to study the vibrational and electronic spectroscopy of ions. Our photofragment spectrometer is shown schematically in Eig. 2. Ions are formed by laser ablation of a metal rod, followed by ion molecule reactions, cool in a supersonic expansion and are accelerated into a dual TOE mass spectrometer. When they reach the reflectron, the mass-selected ions of interest are irradiated using one or more lasers operating in the infrared (IR), visible, or UV. Ions that absorb light can photodissociate, producing fragment ions that are mass analyzed and detected. Each of these steps will be discussed in more detail below, with particular emphasis on the ions of interest. [Pg.335]

Figure 1. Schematic illustration of the laser-vaporization supersonic cluster source. Just before the peak of an intense He pulse from the nozzle (at left), a weakly focused laser pulse strikes from the rotating metal rod. The hot metal vapor sputtered from the surface is swept down the condensation channel in dense He, where cluster formation occurs through nucleation. The gas pulse expands into vacuum, with a skinned portion to serve as a collimated cluster bean. The deflection magnet is used to measure magnetic properties, while the final chaiber at right is for measurement of the cluster distribution by laser photoionization time-of-flight mass spectroscopy. Figure 1. Schematic illustration of the laser-vaporization supersonic cluster source. Just before the peak of an intense He pulse from the nozzle (at left), a weakly focused laser pulse strikes from the rotating metal rod. The hot metal vapor sputtered from the surface is swept down the condensation channel in dense He, where cluster formation occurs through nucleation. The gas pulse expands into vacuum, with a skinned portion to serve as a collimated cluster bean. The deflection magnet is used to measure magnetic properties, while the final chaiber at right is for measurement of the cluster distribution by laser photoionization time-of-flight mass spectroscopy.
This chapter deals mainly with (multi)hyphenated techniques comprising wet sample preparation steps (e.g. SFE, SPE) and/or separation techniques (GC, SFC, HPLC, SEC, TLC, CE). Other hyphenated techniques involve thermal-spectroscopic and gas or heat extraction methods (TG, TD, HS, Py, LD, etc.). Also, spectroscopic couplings (e.g. LIBS-LIF) are of interest. Hyphenation of UV spectroscopy and mass spectrometry forms the family of laser mass-spectrometric (LAMS) methods, such as REMPI-ToFMS and MALDI-ToFMS. In REMPI-ToFMS the connecting element between UV spectroscopy and mass spectrometry is laser-induced REMPI ionisation. An intermediate state of the molecule of interest is selectively excited by absorption of a laser photon (the wavelength of a tuneable laser is set in resonance with the transition). The excited molecules are subsequently ionised by absorption of an additional laser photon. Therefore the ionisation selectivity is introduced by the resonance absorption of the first photon, i.e. by UV spectroscopy. However, conventional UV spectra of polyatomic molecules exhibit relatively broad and continuous spectral features, allowing only a medium selectivity. Supersonic jet cooling of the sample molecules (to 5-50 K) reduces the line width of their... [Pg.428]

Wang, Z. Russon, L. Li, L. Roser, D. C. Long, S. R. Investigation of spectral reproducibility in direct analysis of bacteria proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy. Rapid Comm. Mass Spectrom. 1998,12,456-464. [Pg.316]

The industrial application of Plasma Induced Chemical Vapour Deposition (PICVD) of amorphous and microcrystalline silicon films has led to extensive studies of gas phase and surface processes connected with the deposition process. We are investigating the time response of the concentration of species involved in the deposition process, namely SiH4, Si2H6, and H2 by relaxation mass spectroscopy and SiH2 by laser induced fluorescence. [Pg.337]

The initial observation is that PMMA is essentially completely degraded to monomer by heating to 375°C in a sealed tube while heating a mixture of red phosphorus and PMMA under identical conditions yields a solid, non-deqraded, product as well as a lower yield of monomer. One may observe, by 3C NMR spectroscopy, that the methoxy resonance is greatly decreased in intensity and methyl, methoxy phosphonium ions are observed by 31P NMR. Additional carbonyl resonances are also seen in the carbon spectrum, this correlates with a new carbonyl vibration near 1800 cm 1 in the infrared spectrum and may be assigned to the formation of anhydride. The formation of anhydride was also confirmed by assignment of mass spectra obtained by laser desorption Fourier transform mass spectroscopy, LD-FT-MS. [Pg.181]

After device construction, structural and functional analysis are critical. One might argue that only the second issue matters, but structural data often give insights into why devices perform suboptimally, and provide important clues about how to improve device function. We routinely use protein analytics (matrix-assisted laser desorption-ionization mass spectroscopy, amino acid composition analysis, gel electrophoresis, Western blotting, circular dichroism, vari-... [Pg.550]

Gieseler et al. utilized tunable diode laser absorption spectroscopy to detect water vapor concentrations, gas velocities and mass flow during freeze-drying of pure water at different pressure and shelf temperature settings and of a 5%w/w mannitol solution. The analyzer was interfaced to the spool that connected the dryer chamber to the condenser. The reported method was advantageous in that primary and secondary drying end-point control based upon mass flow rate was independent of freeze-dryer size and configuration. ... [Pg.454]

H. Gieseler, W.J. Kessler, M. Finson, et al.. Evaluation of tunable diode laser absorption spectroscopy for in-process water vapor mass flux measurements during freeze drying, J. Pharm. Sci., 96(7), 1776-1793 (2007). [Pg.461]

The first of two stays of the senior author at Iowa State University was supported by a contract between Ae United Nations Industrial Development Organization and Ae National Chemical Laboratory, administered in the United States by the Carl Duisberg Society, Inc. This work was also supported by the Engineering Research Institute of Iowa State University. The authors thank Ron Niece, Cynthia Wadsworth, Nick Strickland, and Tony Grabski of the University of Wisconsin Biotechnology Center for providing confirmation of the amino acid sequence, and Brian Chait and Ron Beavis of Rockefeller University for attempting matrix-assisted laser desorption mass spectroscopy on Ac enzyme. This article is N(X Communication No. 4950. [Pg.424]


See other pages where Laser mass spectroscopy is mentioned: [Pg.7]    [Pg.54]    [Pg.572]    [Pg.191]    [Pg.128]    [Pg.7]    [Pg.54]    [Pg.572]    [Pg.191]    [Pg.128]    [Pg.2]    [Pg.235]    [Pg.259]    [Pg.140]    [Pg.98]    [Pg.207]    [Pg.210]    [Pg.60]    [Pg.577]    [Pg.448]    [Pg.149]    [Pg.190]    [Pg.162]    [Pg.334]    [Pg.225]    [Pg.305]    [Pg.325]    [Pg.63]    [Pg.302]    [Pg.420]   
See also in sourсe #XX -- [ Pg.208 , Pg.215 ]

See also in sourсe #XX -- [ Pg.600 ]

See also in sourсe #XX -- [ Pg.220 ]

See also in sourсe #XX -- [ Pg.562 ]




SEARCH



Combination of Molecular Beam Laser Spectroscopy and Mass Spectrometry

Laser desorption mass spectroscopy

Laser induced mass spectroscopy

Laser spectroscopy

Mass spectroscopy

Mass spectroscopy matrix assisted laser desorption

Mass spectroscopy surface-enhanced laser

Matrix Assisted Laser Desorption Ionisation Mass Spectroscopy

Matrix-assisted laser desorption - time-of-flight mass spectroscopy

Matrix-assisted laser desorption ionization mass spectroscopy

Matrix-assisted laser desorption-ionization MALDI) mass spectroscopy

Matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy

Matrix-assisted laser-desorption ionization MALDI) mass spectroscopy, group

Matrix-assisted laser-desorption/ionization-mass spectroscopy analysis

© 2024 chempedia.info