Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Laser ablation, analytical method

At present the real strength of LA lies in the measurement of distribution patterns of minor and trace elements in solid samples with high spatial resolution. Homogeneity testing is an application of LA-ICP-MS. There is an increasing demand for the development and validation of accurate and robust analytical technologies for the determination of the chemical characteristics of polymeric products in support of industrial needs, EC regulations (e.g. Directive on toy safety) or research. Needs are particularly acute for techniques able to determine trace element contents in solids with a minimum sample preparation. For this purpose, laser ablation-based methods, such as LA-ICP-AES/MS and laser-induced plasma atomic emission spectrometry (LIP-AES, LA-AES or LIBS) have already... [Pg.335]

Aerosols can be produced as a spray of droplets by various means. A good example of a nebulizer is the common household hair spray, which produces fine droplets of a solution of hair lacquer by using a gas to blow the lacquer solution through a fine nozzle so that it emerges as a spray of small droplets. In use, the droplets strike the hair and settle, and the solvent evaporates to leave behind the nonvolatile lacquer. For mass spectrometry, a spray of a solution of analyte can be produced similarly or by a wide variety of other methods, many of which are discussed here. Chapters 8 ( Electrospray Ionization ) and 11 ( Thermospray and Plasmaspray Interfaces ) also contain details of droplet evaporation and formation of ions that are relevant to the discussion in this chapter. Aerosols are also produced by laser ablation for more information on this topic, see Chapters 17 and 18. [Pg.138]

Laser based mass spectrometric methods, such as laser ionization (LIMS) and laser ablation in combination with inductively coupled plasma mass spectrometry (LA-ICP-MS) are powerful analytical techniques for survey analysis of solid substances. To realize the analytical performances methods for the direct trace analysis of synthetic and natural crystals modification of a traditional analytical technique was necessary and suitable standard reference materials (SRM) were required. Recent developments allowed extending the range of analytical applications of LIMS and LA-ICP-MS will be presented and discussed. For example ... [Pg.425]

There are a few drawbacks to this method. Using 4 or 5 TIMS measurements to produce a U-series date profile across a bone is time consuming, although a single reliable U-series date is surely worth hundreds where the accuracy is not known. In future, the application of Laser-Ablation ICP-MS to measuring profiles will significantly reduce the analytical effort required to obtain a date. [Pg.615]

Nondestructive radiation techniques can be used, whereby the sample is probed as it is being produced or delivered. However, the sample material is not always the appropriate shape or size, and therefore has to be cut, melted, pressed or milled. These handling procedures introduce similar problems to those mentioned before, including that of sample homogeneity. This problem arises from the fact that, in practice, only small portions of the material can be irradiated. Typical nondestructive analytical techniques are XRF, NAA and PIXE microdestructive methods are arc and spark source techniques, glow discharge and various laser ablation/desorption-based methods. On the other hand, direct solid sampling techniques are also not without problems. Most suffer from matrix effects. There are several methods in use to correct for or overcome matrix effects ... [Pg.589]

Raith, A., Hutton, R. C., Abell, I. D., and Crighton, J. (1995). Non-destructive sampling method of metals and alloys for laser ablation-inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectroscopy 10 591-594. [Pg.380]

Laser ablation ToF MS analysis, using IR lasers, has also been performed to characterize ILs [15]. It could be shown that intact ILs are ablated by this method. The neutral species ablated could be further investigated by vacuum UV postionization. Due to the faster heating rates achieved by this ablation process compared to the UV-LDI analysis, less fragmentation caused by the thermal decomposition of the analytes was observed. [Pg.379]

Because ICP-MS with different instrumentations and sample introduction systems (besides solution nebulization, also laser ablation or hyphenated methods, such as HPLC, CE, SPME) is today the most frequently used analytical technique for precise and accurate isotope ratio measurements, the following section will mainly focus on this form of mass spectrometry with an inductively coupled plasma source. [Pg.228]

Use of inductively coupled plasma-mass spectrometry (1CP-MS) coupled to a laser-ablation sample introduction system (LA-ICP-MS) as a minimally destructive method for chemical characterization of archaeological materials has gained favor during the past few years. Although still a relatively new analytical technique in archaeology, LA-ICP-MS has been demonstrated to be a productive avenue of research for chemical characterization of obsidian, chert, pottery, painted and glazed surfaces, and human bone and teeth. Archaeological applications of LA-ICP-MS and comparisons with other analytical methods are described. [Pg.275]

Since the mid-1960s, a variety of analytical chemistry techniques have been used to characterize obsidian sources and artifacts for provenance research (4, 32-36). The most common of these methods include optical emission spectroscopy (OES), atomic absorption spectroscopy (AAS), particle-induced X-ray emission spectroscopy (PIXE), inductively coupled plasma-mass spectrometry (ICP-MS), laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS), X-ray fluorescence spectroscopy (XRF), and neutron activation analysis (NAA). When selecting a method of analysis for obsidian, one must consider accuracy, precision, cost, promptness of results, existence of comparative data, and availability. Most of the above-mentioned techniques are capable of determining a number of elements, but some of the methods are more labor-intensive, more destructive, and less precise than others. The two methods with the longest and most successful histoty of success for obsidian provenance research are XRF and NAA. [Pg.527]

The isotope dilution technique in LA-ICP-MS has been applied for the direct analysis of sulfur species in gas oil, diesel or heating fuel as described by Boulyga et al. In addition, these authors have developed an analytical method for the direct determination of halogens (Cl, Br and I) in powdered geological and environmental samples using isotope dilution laser ablation ICP-MS. The detection limits of LA-ICP-IDMS are in the low and sub-p,gg range for halogens. ... [Pg.199]


See other pages where Laser ablation, analytical method is mentioned: [Pg.614]    [Pg.170]    [Pg.207]    [Pg.228]    [Pg.20]    [Pg.22]    [Pg.3]    [Pg.5]    [Pg.199]    [Pg.202]    [Pg.207]    [Pg.240]    [Pg.272]    [Pg.349]    [Pg.355]    [Pg.367]    [Pg.429]    [Pg.513]    [Pg.517]    [Pg.276]    [Pg.297]    [Pg.305]    [Pg.336]    [Pg.258]    [Pg.3]    [Pg.5]    [Pg.202]    [Pg.207]    [Pg.240]    [Pg.272]    [Pg.349]    [Pg.355]    [Pg.367]    [Pg.429]    [Pg.513]    [Pg.517]    [Pg.296]    [Pg.69]   
See also in sourсe #XX -- [ Pg.331 ]




SEARCH



Ablate

Ablation

Ablation method, laser

Ablator

Ablators

Laser ablation

Laser ablation, analytical method Applications

© 2024 chempedia.info