Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lanthanide catalysts Diels-Alder reactions

A combination of the promoting effects of Lewis acids and water is a logical next step. However, to say the least, water has not been a very popular medium for Lewis-acid catalysed Diels-Alder reactions, which is not surprising since water molecules interact strongly with Lewis-acidic and the Lewis-basic atoms of the reacting system. In 1994, when the research described in this thesis was initiated, only one example of Lewis-acid catalysis of a Diels-Alder reaction in water was published Lubineau and co-workers employed lanthanide triflates as a catalyst for the Diels-Alder reaction of glyoxylate to a relatively unreactive diene . No comparison was made between the process in water and in organic solvents. [Pg.31]

First, the use of water limits the choice of Lewis-acid catalysts. The most active Lewis acids such as BFj, TiQ4 and AlClj react violently with water and cannot be used However, bivalent transition metal ions and trivalent lanthanide ions have proven to be active catalysts in aqueous solution for other organic reactions and are anticipated to be good candidates for the catalysis of aqueous Diels-Alder reactions. [Pg.48]

Kobayashi et al. have reported the use of a chiral lanthanide(III) catalyst for the Diels-Alder reaction [51] (Scheme 1.63, Table 1.26). Catalyst 33 was prepared from bi-naphthol, lanthanide triflate, and ds-l,2,6-trimethylpiperidine (Scheme 1.62). When the chiral catalyst prepared from ytterbium triflate (Yb(OTf)3) and the lithium or sodium salt of binaphthol was used, less than 10% ee was obtained, so the amine exerts a great effect on the enantioselectivity. After extensive screening of amines, ds-1,2,6-... [Pg.40]

In 1996, the first example of the catalytic enantioselective aza Diels-Alder reactions of azadienes using a chiral lanthanide catalyst was reported [4], In this article, successful examples of such catalytic reactions are surveyed. [Pg.188]

To achieve catalytic enantioselective aza Diels-Alder reactions, choice of metal is very important. It has been shown that lanthanide triflates are excellent catalysts for achiral aza Diels-Alder reactions [5]. Although stoichiometric amounts of Lewis acids are often required, a small amount of the triflate effectively catalyzes the reactions. On the basis of these findings chiral lanthanides were used in catalytic asymmetric aza Diels-Alder reactions. The chiral lanthanide Lewis acids were first developed to realize highly enantioselective Diels-Alder reactions of 2-oxazolidin-l-one with dienes [6]. [Pg.188]

The most frequently encountered, and most useful, cycloaddition reactions of silyl enol ethers are Diels-Alder reactions involving silyloxybutadicncs (Chapter 18). Danishefsky (30) has reviewed his pioneering work in this area, and has extended his studies to include heterodienophiles, particularly aldehydes. Lewis acid catalysis is required in such cases, and substantial asymmetric induction can be achieved using either a chiral lanthanide catalyst or an a-chiral aldehyde. [Pg.66]

Many Lewis-acid catalysts have been studied and used in the Diels-Alder reactions, ranging from the more commonly used strong Lewis acids such as AICI3, TiCU, SnCU, ZnCli, ZnBri, etc., to the milder lanthanide complexes and to the chiral catalyst. [Pg.99]

The 2-pyrones can behave as dienes or dienophiles depending on the nature of their reaction partners. 3-Carbomethoxy-2-pyrone (84) underwent inverse Diels-Alder reaction with several vinylethers under lanthanide shift reagent-catalysis [84] (Equation 3.28). The use of strong traditional Lewis acids was precluded because of the sensitivity of the cycloadducts toward decarboxylation. It is noteworthy that whereas Yb(OTf)j does not catalyze the cycloaddition of 84 with enolethers, the addition of (R)-BINOL generates a new active ytterbium catalyst which promotes the reactions with a moderate to good level of enantio selection [85]. [Pg.126]

The aqueous aza-Diels-Alder reaction of an aldehyde and an amine hydrochloride with a diene is catalyzed by lanthanide(III) trifluoromethane sulfonates (Ln(OTf)3, triflates [24]). Some examples are reported in Schemes 6.12 and 6.13. With respect to uncatalyzed reactions, the lanthanide catalyst allows milder reaction conditions, increases the reaction yield and does not affect the diaster-eoselectivity of the reaction, but influences the regiochemistry as in the cycloaddition of 25 with 1,3-dimethyl-1,3-butadiene (Schemes 6.10 and 6.12). These results have been applied [24b-d] to the synthesis of azasugars (Scheme 6.14). [Pg.262]

Kobayashi has found that scandium triflate, Sc(OTf)3,36 and lanthanide triflate, Ln(OTf)3, are stable and can be used as Lewis catalysts under aqueous conditions. Many other Lewis acids have also been reported to catalyze Diels-Alder reactions in aqueous media. For example, Engberts reported37 that the cyclization reaction in Eq. 12.7 in an aqueous solution containing 0.010 M Cu(N03)2 is 250,000 times faster than that in acetonitrile and about 1,000 times faster than that in water alone. Other salts, such as Co2+, Ni2+, and Zn2+, also catalyze the reaction, but not as effectively as Cu2+. However, water has no effect on the endo-exo selectivity for the Lewis-acid catalyzed reaction. [Pg.380]

Perhaps the most attractive method of introducing enantioselectivity into the Diels-Alder reaction is to use a chiral catalyst in the form of a Lewis acidic metal complex. In recent years, this area has shown the greatest progress, with the introduction of many excellent catalytic processes. Quite a number of ligand-metal combinations have been evaluated for their potential as chiral catalysts in Diels-Alder reactions. The most commonly used metals are boron, titanium, and aluminum. Copper, magnesium, and lanthanides have also been used in asymmetric catalytic Diels-Alder reactions. [Pg.279]

In the presence of a catalytic amount of chiral lanthanide triflate 63, the reaction of 3-acyl-l,3-oxazolidin-2-ones with cyclopentadiene produces Diels-Alder adducts in high yields and high ee. The chiral lanthanide triflate 63 can be prepared from ytterbium triflate, (R)-( I )-binaphthol, and a tertiary amine. Both enantiomers of the cycloaddition product can be prepared via this chiral lanthanide (III) complex-catalyzed reaction using the same chiral source [(R)-(+)-binaphthol] and an appropriately selected achiral ligand. This achiral ligand serves as an additive to stabilize the catalyst in the sense of preventing the catalyst from aging. Asymmetric catalytic aza Diels-Alder reactions can also be carried out successfully under these conditions (Scheme 5-21).19... [Pg.282]

Another example of the use of Lewis acids in organic reactions in water is the lan-thanide(III) triflate catalysed aza-Diels-Alder reaction, exemplified in Scheme 14. In this reaction the hetero-dienophile is formed in situ from a primary ammonium hydrochloride and a carbonyl compound followed by the actual Diels-Alder reaction288,289. This type of reaction proceeds readily in aqueous media290-296, and a dramatic increase in the yield upon addition of lanthanide triflates was observed288,289. The exact role of the catalyst, however, is not entirely clear. Although it was suggested that the catalyst binds to the dienophile, other mechanisms, such as simple proton catalysis, are also plausible. Moreover, these reactions are further complicated since they are often heterogeneous. [Pg.1075]

Although several Lewis acids are known to catalyze the hetero-Diels-Alder reaction involving imino-dienes or imino-dienophiles (aza-Diels-Alder reaction), a large amount of the catalyst is often necessary. Bi(0Tf)3-xH20 showed higher activity than lanthanide triflates in catalyzing the reactions of imines with Danishefsky s diene (Scheme 15) [72]. [Pg.152]

Hanessian and Compain have also reported a Lewis acid-promoted inverse electron demand hetero-Diels-Alder reaction between dihydrofurans and dihydropyrans with a-keto-/3,7-unsaturated phosphonates to give stmcturally related products <2002T6521>. High-pressure OTr/o-selective hetero-Diels-Alder reactions between a,/3-unsaturated aldehydes and enol ethers in the presence of lanthanide catalysts have also been reported and give 3,4-dihydro-27/-pyrans. Examples include the use of cyclic enol ethers to give 2,3,4,4a,5,8a-hexahydro-277,577-pyrano[2,3-. ]pyrans <1995T8383>. [Pg.737]

Kobayashi reported an asymmetric Diels-Alder reaction catalyzed by a chiral lanthanide(III) complex 24, prepared from ytterbium or scandium triflate [ Yb(OTf)3 or Sc(OTf)3], (Zf)-BINOL and tertiary amine (ex. 1,2,6-trimethylpiperidine) [30], A highly enantioselective and endose-lective Diels-Alder reaction of 3-(2-butenoyl)-l,3-oxazolidin-2-one (23) with cyclopentadiene (Scheme 9.13) takes place in the presence of 24. When chiral Sc catalyst 24a was used, asymmetric amplification was observed with regard to the enantiopurity of (/ )-BINOL and that of the endoadduct [31 ]. On the other hand, in the case of chiral Yb catalyst 24b, NLE was affected by additives, that is, when 3-acetyl-l,3-oxazolidin-2-one was added, almost no deviation was observed from linearity, whereas a negative NLE was observed with the addition of 3-pheny-lacetylacetone. [Pg.707]

In hetero-Diels-Alder reactions, the effect of ligand structure and acidity on the catalytic activity of lanthanide catalysts has been reviewed.191 The effect of different C(2)-symmetric bisoxazolines on the zinc(II)-catalysed hetero-Diels-Alder reaction of ethyl glyoxylate with conjugated 1,3-dienes has been investigated.192 The hetero-Diels-Alder reaction 4-dimethylamino-2-phenyl-l-thiabuta-1,3 -diene with methyl acrylate and /V-cnoyloxazolidinone produces cw-3,4-disubstituted 3,4-dihydro-2//-... [Pg.451]

Diels-Alder catalysts.1 These lanthanide complexes markedly improve the rate and endo-selectivity of Diels-Alder reactions of cyclopentadiene with allenic... [Pg.355]

The use of lanthanide triflates as catalysts for imino-Diels-Alder reactions has been described very recently in a feature article Kobayashi S, Ishitani H, Nagayama S (1995) Synthesis 1195... [Pg.111]

These complexes are the first examples of multifunctional catalysts and demonstrate impressively the opportunities that can reside with the as yet hardly investigated bimetallic catalysis. The concept described here is not limited to lanthanides but has been further extended to main group metals such as gallium [31] or aluminum [32]. In addition, this work should be an incentive for the investigation of other metal-binaphthyl complexes to find out whether polynuclear species play a role in catalytic processes there as well. For example, the preparation of ti-tanium-BINOL complexes takes place in the presence of alkali metals [molecular sieve ( )]. A leading contribution in this direction has been made by Kaufmann et al, as early as 1990 [33], It was proven that the reaction of (5)-la with monobromoborane dimethyl sulfide leads exclusively to a binuclear, propeller-like borate compound. This compound was found to catalyze the Diels-Alder reaction of cyclopentadiene and methacrolein with excellent exo-stereoselectivity and enantioselectivity in accordance with the empirical rule for carbonyl compounds which has been presented earlier. [Pg.164]

Diels-Alder reaction of aldehydes with activated dienes. This lanthanide shift reagent can function as a Lewis acid catalyst in the cyclocondensation of l-methoxy-3-trimethylsilyloxy-1,3-diene (2) with aromatic aldehydes, and permits isolation of the initial... [Pg.560]

Lanthanide triflates catalyse Diels-Alder reactions, with the scandium complex as the most effective catalyst, and, again, the catalyst can be recovered and reused, being just as effective in subsequent runs. [Pg.132]

Lanthanide triflates are catalysts for a powerful imino-Diels-Alder reaction for building N-containing six-membered heterocycles. [Pg.133]

There is the potential with some substrates that the Lewis acidity of the lanthanide ion can catalyze a reaction. For example, the addition of Eu(hfc)3 to a racemic mixture of dimethylpenta-2,3-dienoates (39) caused an enrichment of the (5 )-isomer °. Over nine days the mixture converted to an 89 11 mixture. Lanthanide tris( S-diketonates) are well known catalysts for Diels-Alder reactions, and NMR spectroscopy of the reactants with Eu(hfc)3 was used to understand the stereoselectivity of the europium-catalyzed cycloadditions . ... [Pg.807]

These woikers have also examined asymmetric induction in the process in some detail. For instance, cycloaddition of sugar aldehyde (167) occurred to afford only adduct (169) at high pressure (equation 80). It was suggested that the Diels-Alder reaction proceeds via diene attack on the aldehyde conformation shown in (168) from the least congested face. Other chiral aldehydes have been investigated by this group, as has the e ect of lanthanide catalysts upon the extent of asymmetric induction. Summaries of this work have recently been published. ... [Pg.434]

Another alternative, LiNTfa, was also employed as Lewis acid catalyst (1 mol %) in the Diels-Alder reaction of CP with MVK in CH2CI2. The rate enhancement was moderate compared with that obtained with the other alkali earth and lanthanide metal imides Mg(NTf2)2, La(NTf2)3.H20, and Zn(NTfa)2 (Sch. 25) [73]. [Pg.29]

Lanthanide triflates are also efficient catalysts in some Diels-Alder reactions, and Sc(OTf)3 is clearly more effective than Ln(OTf)3 as a catalyst [21]. In the presence of 10 mol % Y(OTf)3 or Yb(OTf)3, only a trace amount of the adduct was obtained in the Diels-Alder reaction of methyl vinyl ketone (MVK) with isoprene. The reaction proceeded smoothly, however, giving the adduct in 91 % yield in the presence of 10 mol % Sc(OTf)3 [21a]. Several examples of the Sc(OTf)3-catalyzed Diels-Alder reactions are shown in Table 2. The Diels-Alder adducts are always obtained in high yield with high endo selectivity. [Pg.889]

Although asymmetric versions of aza Diels-Alder reactions using chiral auxiliaries have been reported, only one example uses a stoichiometric amount of a chiral Lewis acid [44]. The first reported example of a catalytic enantioselective aza Diels-Alder reaction employed a chiral lanthanide catalyst [45]. A chiral ytterbium or scandium catalyst, prepared from Yb(OTf)3 or Sc(OTf)3, (i )-BINOL, and DBU, is effective in the enantioselective aza Diels-Alder reactions. The reaction of A-alkylidene- or N-arylidene-2-hydroxyaniline with cyclopentadiene proceeded in the presence of the chiral catalyst and 2,6-di-rerf-butyl-4-methylpyridine (DTBMP) to afford the corresponding 8-hydroxyquinoline derivatives in good to high yields with good to excellent diastereo- and enantioselectivity (Eq. 15). [Pg.894]

Lanthanide Lewis acids catalyze many of the reactions catalyzed by other Lewis acids, for example, the Mukaiyama-aldol reaction [14], Diels-Alder reactions [15], epoxide opening by TMSCN and thiols [14,10], and the cyanosilylation of aldehydes and ketones [17]. For most of these reactions, however, lanthanide Lewis acids have no advantages over other Lewis acids. The enantioselective hetero Diels-Alder reactions reported by Danishefsky et al. exploited one of the characteristic properties of lanthanides—mild Lewis acidity. This mildness enables the use of substrates unstable to common Lewis acids, for example Danishefsky s diene. It was recently reported by Shull and Koreeda that Eu(fod)3 catalyzed the allylic 1,3-transposition of methoxyace-tates (Table 7) [18]. This rearrangement did not proceed with acetates or benzoates, and seemed selective to a-alkoxyacetates. This suggested that the methoxy group could act as an additional coordination site for the Eu catalyst, and that this stabilized the complex of the Eu catalyst and the ester. The reaction proceeded even when the substrate contained an alkynyl group (entry 7), or when proximal alkenyl carbons of the allylic acetate were fully substituted (entries 10, 11 and 13). In these cases, the Pd(II) catalyzed allylic 1,3-transposition of allylic acetates was not efficient. [Pg.918]

Kobayashi et al. found that lanthanide triflates were excellent catalysts for activation of C-N double bonds —activation by other Lewis acids required more than stoichiometric amounts of the acids. Examples were aza Diels-Alder reactions, the Man-nich-type reaction of A-(a-aminoalkyl)benzotriazoles with silyl enol ethers, the 1,3-dipolar cycloaddition of nitrones to alkenes, the 1,2-cycloaddition of diazoesters to imines, and the nucleophilic addition reactions to imines [24], These reactions are efficiently catalyzed by Yb(OTf)3. The arylimines reacted with Danishefsky s diene to give the dihydropyridones (Eq. 14) [25,26], The arylimines acted as the azadienes when reacted with cyclopentadiene, vinyl ethers or vinyl thioethers, providing the tet-rahydroquinolines (Eq. 15). Silyl enol ethers derived from esters, ketones, and thio-esters reacted with N-(a-aminoalkyl)benzotriazoles to give the /5-amino carbonyl compounds (Eq. 16) [27]. The diastereoselectivity was independent of the geometry of the silyl enol ethers, and favored the anti products. Nitrones, prepared in situ from aldehydes and N-substituted hydroxylamines, added to alkenes to afford isoxazoli-dines (Eq. 17) [28]. Addition of diazoesters to imines afforded CK-aziridines as the major products (Eq. 18) [29]. In all the reactions the imines could be generated in situ and the three-component coupling reactions proceeded smoothly in one pot. [Pg.921]

Catalytic Asymmetric Diels-AIder Reactions and Hetero Diels-Alder Reactions Promoted by Chiral Lanthanide Catalysts... [Pg.923]

Danishefsky and co-workers pioneered the use of chiral lanthanide complexes as catalysts in organic reactions. They found out that Eu(hfc)3, which is used as an NMR shift reagent, promoted hetero Diels-Alder reactions [30] of aldehydes with siloxydienes and induced enantiomeric enrichment (Sch. 1) [31]. Suitable substituents on the dienes were introduced to improve the extent of asymmetric induction. The best result was obtained in the reaction of benzaldehyde with l-methoxy-2-methyl-3-(trimethyl-siloxy)- , 3-butadiene using 1 mol % Eu(hfc)3 the enantiomerie excess was, however, moderate (58%). The authors maintained that the major advantage of lanthanide catalysis lay in the survival of otherwise labile systems used as adducts. [Pg.923]

Kobayashi and co-workers exploited the use of lanthanide in a variety of achiral reactions and extended them into several catalytic asymmetric reactions. Their work commenced with catalytic asymmetric Diels-Alder reactions [32], The reaction was performed with a chiral ytterbium catalyst prepared from Yb(OTf)3, binaphthol and a tertiary amine. The amine significantly influenced reaction selectivity. When triethyl-amine was used in the preparation of the catalyst, the desired product was obtained in moderate ee (33%) (Table 8, entry 1). After screening several reaction conditions, they found that, in general, bulky amines gave better results (entries 2-6). They suggested interesting explanations of this experimental result on the basis of investigations into catalyst structure. Consequently, the use of cw-l,2,6-trimethylpiperidine combined with 4 A molecular sieves (4A MS) was found to produce the best result (yield 77%, endolexo = 89/11, endo = 95% ee) (entry 6). [Pg.923]


See other pages where Lanthanide catalysts Diels-Alder reactions is mentioned: [Pg.48]    [Pg.108]    [Pg.254]    [Pg.497]    [Pg.451]    [Pg.127]    [Pg.505]    [Pg.222]   
See also in sourсe #XX -- [ Pg.2 , Pg.667 ]

See also in sourсe #XX -- [ Pg.667 ]

See also in sourсe #XX -- [ Pg.667 ]

See also in sourсe #XX -- [ Pg.2 , Pg.667 ]

See also in sourсe #XX -- [ Pg.667 ]




SEARCH



Asymmetric aza Diels-Alder reactions synthesis of tetrahydroquinoline derivatives using a chiral lanthanide Lewis acid as catalyst

Catalysts Diels-Alder

Lanthanide complexes Diels-Alder reaction catalysts

Lanthanides Diels-Alder reaction

Lanthanides reactions

© 2024 chempedia.info